Nav: Home

Climate seesaw at the end of the last glacial phase

March 31, 2017

The climate of the Earth follows a complex interplay of cause-and-effect chains. A change in precipitation at one location may be caused by changes on the other side of the planet. A better understanding of these "teleconnections" -- the linkages between remote places -- may help to better understand local impacts of future climate change. A look into the climate of the past helps to investigate the teleconnections.

An international team of Japanese, British, Australian, and German scientists, with the participation of the GFZ German Research Centre for Geosciences, now investigated Japanese lake sediments to decipher the interplay between local climate changes on the northern hemisphere about 12.000 years ago. Their results, now published as Nature Scientific Report, show that a regional warming in Europe caused a cooling and an increase in snowfall in East Asia.

The Younger Dryas was a cold period of about one thousand and two hundred years at the end of the last glacial phase, and occurred about 12,800 to 11,600 years ago. While the world had already turned towards a warmer climate, there was an abrupt backlash to a much colder conditions. The average global temperature fell by three to four degrees within only a few decades.

Why? This is still unclear. The team around the former GFZ PhD student of the GFZ section Climate Dynamics and Landscape Evolution, Gordon Schlolaut (now Japan Agency for Marine-Earth Science and Technology), investigated sediments from Lake Suigetsu in Japan, to reconstruct East Asian climate change during the Younger Dryas. The scientists were able to show that the cold period was divided into two different phases showingopposing climate trends than in Europe which the scientists explain by teleconnections.

Achim Brauer, Head of the GFZ section Climate Dynamics and Landscape Evolution and Director of the Department Geoarchives says: "Little by little we come to understand the interplay between regional climate changes at the end of the last glacial phase. This brings us closer to our ultimate aim of anticipating regional impacts of future globalclimate change".

During the first half of the cold period until about 12,200 years ago, Europe's climate was cold and dry, while the second half was more warm and humid. The scientists assume that this warming was related to changes in atmospheric pressure that pushed cold polar air masses and with them the westerlies that are determinant for the European climate further north, which before, during the glacial phase, reached down to Southern Europe. Thereby, more moisture was transported towards Europe.

A bi-partition of the Younger Dryas climate is also seen in East Asia, but in a reverse succession. Here, the first half is comparatively warmer, while the second half's climate is cold, with heavier snowfall.

This climate seesaw is caused by teleconnections, the scientists assume: More humid air masses in Europe mean that some moisture is transported even further eastwards, causing heavy snowfall in central Asia. A thick snow cover formed and caused a cooling of the air masses over East Asia. This had an effect on the Asian monsoon, with a stronger winter monsoon and a slightly weaker summer monsoon resulting in winters with heavier snowfall drier summers.

The algae of the investigated lake, and the spores and pollen from plants that were surrounding the lake, that were deposited throughout the centuries of the cold period, as well as changes in the chemical composition of the sediments, provide the scientists with important information on regional changes in temperature and rainfall. Since the sediments were deposited seasonally, they can be compared with sediments of European lakes at annual time resolution.

Furthermore, Greenland ice cores and marine sediments from the North Atlantic provide information on large-scale temperature changes of the northern hemisphere. Like parts of a puzzle, these different regional archives provide an overall picture of the climatic changes during that time and show how regional climate changes were influencing each other.
-end-
Original study: Schlolaut, G., Brauer, A., Nakagawa, T., Lamb, H.F., Tyler, J.J., Staff, R.A., Marshall, M.H., Bronk Ramsey, C., Bryant, C.L., Tarasov, P.E., 2017. Evidence for a bi-partition of the Younger Dryas Stadial in East Asia associated with inversed climate characteristics compared to Europe. Nature Scientific Reports, 7:44983. DOI: 10.1038/srep44983

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

Related Climate Articles:

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
How aerosols affect our climate
Greenhouse gases may get more attention, but aerosols -- from car exhaust to volcanic eruptions -- also have a major impact on the Earth's climate.
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
How trees could save the climate
Around 0.9 billion hectares of land worldwide would be suitable for reforestation, which could ultimately capture two thirds of human-made carbon emissions.
Climate undermined by lobbying
For all the evidence that the benefits of reducing greenhouse gases outweigh the costs of regulation, disturbingly few domestic climate change policies have been enacted around the world so far.
Climate education for kids increases climate concerns for parents
A new study from North Carolina State University finds that educating children about climate change increases their parents' concerns about climate change.
Inclusion of a crop model in a climate model to promote climate modeling
A new crop-climate model provides a good tool to investigate the relationship between crop development and climate change for global change studies.
Natural climate solutions are not enough
To stabilize the Earth's climate for people and ecosystems, it is imperative to ramp up natural climate solutions and, at the same time, accelerate mitigation efforts across the energy and industrial sectors, according to a new policy perspective published today in Science.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
More Climate News and Climate Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab