Some of Greenland's coastal ice will be permanently lost by 2100

March 31, 2017

COLUMBUS, Ohio--The glaciers and ice caps that dot the edges of the Greenland coast are not likely to recover from the melting they are experiencing now, a study has found.

Researchers report in the current issue of the journal Nature Communications that melting on the island passed a tipping point 20 years ago. The smallest glaciers and ice caps on the coast are no longer able to regrow lost ice.

The current study suggests that the melting of Greenland's coastal ice will raise global sea level by about 1.5 inches by 2100.

The find is important because it reveals exactly why the most vulnerable parts of Greenland ice are melting so quickly: the deep snow layer that normally captures coastal meltwater was filled to capacity in 1997. That layer of snow and meltwater has since frozen solid, so that all new meltwater flows over it and out to sea.

It's bad news, but not immediate cause for panic, said Ohio State University glaciologist Ian Howat, part of the international research team that made the discovery.

The findings apply to the comparatively small amount of ice along the coast only, he explained--not the Greenland Ice Sheet, which is the second largest ice cache in the world.

"These peripheral glaciers and ice caps can be thought of as colonies of ice that are in rapid decline, many of which will likely disappear in the near future," said Howat, associate professor of earth sciences at Ohio State. "In that sense, you could say that they're 'doomed.' However, the ice sheet itself is still not 'doomed' in the same way. The vast interior ice sheet is more climatologically isolated than the surrounding glaciers and ice caps.

"Also, since this 'tipping point' was reached in the late 90's before warming really took off, it indicates that these peripheral glaciers are very sensitive and, potentially, ephemeral relative to the timescales of response of the ice sheet."

Were all of Greenland's coastal ice to melt away at once, global sea level would rise a few inches. For comparison, were the whole Greenland Ice Sheet to melt away at once, global sea level would rise 24 feet.

The problem lies between fresh surface snow and the ice, in a layer of older snow called the firn. Normally, meltwater drains through gaps in the firn down to the ice surface, where the bottom layer re-freezes. That's how glaciers and ice caps grow.

When the firn around Greenland's edges became fully saturated 20 years ago, it froze through from bottom to top. Since then, there haven't been any gaps to capture meltwater, and the ice hasn't been able to grow.

At the time, researchers couldn't have known, because they lacked three things: a high-resolution topographic model of the glaciers, a detailed map of glacier boundaries, and a high resolution numerical model of drainage processes.

Howat provided the first two with his Greenland Ice Mapping Project Digital Elevation Model, which offers 30-meter resolution over the entire Greenland surface. Then his colleagues were able to use that data to boost the resolution of their numerical model and get a better idea of where and how the ice caps and glaciers were losing mass.

They found that, for the last 20 years, mass loss has been exactly equal to the amount of meltwater runoff lost to sea. Simulations showed that a frozen firn was the most likely cause.

The Greenland Ice Sheet is subject to the same danger, Howat said, but to a much lesser degree than the isolated bits of ice on its edges.

The real value of the study is that provides "more evidence of rapid change and how it happens," he added.
-end-
Coauthors on the paper are from Utrecht University and Delft University of Technology in the Netherlands; the University of Zurich and University of Fribourg in Switzerland; the Geological Survey of Denmark and Greenland GEUS; and the Norwegian Polar Institute.

The research was funded by the Polar Programme of the Netherlands Organization for Scientific Research, the Netherlands Earth System Science Centre, NASA, the Programme for Monitoring of the Greenland Ice Sheet and the Danish Energy Agency. All maps were designed and processed using the free geographic information system software QGIS.

Contact: Ian Howat, 614-292-6641; Howat.4@osu.edu

Written by Pam Frost Gorder, 614-292-9475; Gorder.1@osu.edu

Ohio State University

Related Ice Sheet Articles from Brightsurf:

Greenland ice sheet shows losses in 2019
The Greenland Ice Sheet recorded a new record loss of mass in 2019.

Warming Greenland ice sheet passes point of no return
Nearly 40 years of satellite data from Greenland shows that glaciers on the island have shrunk so much that even if global warming were to stop today, the ice sheet would continue shrinking.

Greenland ice sheet meltwater can flow in winter, too
Liquid meltwater can sometimes flow deep below the Greenland Ice Sheet in winter, not just in the summer, according to CIRES-led work published in the AGU journal Geophysical Research Letters today.

Ice sheet melting: Estimates still uncertain, experts warn
Estimates used by climate scientists to predict the rate at which the world's ice sheets will melt are still uncertain despite advancements in technology, new research shows.

Thousands of meltwater lakes mapped on the east Antarctic ice sheet
The number of meltwater lakes on the surface of the East Antarctic Ice Sheet is more significant than previously thought, according to new research.

Researchers discover ice is sliding toward edges off Greenland Ice Sheet
They found that ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.

A clearer picture of global ice sheet mass
Fluctuations in the masses of the world's largest ice sheets carry important consequences for future sea level rise, but understanding the complicated interplay of atmospheric conditions, snowfall input and melting processes has never been easy to measure due to the sheer size and remoteness inherent to glacial landscapes.

Researchers discover more than 50 lakes beneath the Greenland Ice Sheet
Researchers have discovered 56 previously uncharted subglacial lakes beneath the Greenland Ice Sheet bringing the total known number of lakes to 60.

Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.

Novel hypothesis goes underground to predict future of Greenland ice sheet
The Greenland ice sheet melted a little more easily in the past than it does today because of geological changes, and most of Greenland's ice can be saved from melting if warming is controlled, says a team of Penn State researchers.

Read More: Ice Sheet News and Ice Sheet Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.