Nav: Home

Some of Greenland's coastal ice will be permanently lost by 2100

March 31, 2017

COLUMBUS, Ohio--The glaciers and ice caps that dot the edges of the Greenland coast are not likely to recover from the melting they are experiencing now, a study has found.

Researchers report in the current issue of the journal Nature Communications that melting on the island passed a tipping point 20 years ago. The smallest glaciers and ice caps on the coast are no longer able to regrow lost ice.

The current study suggests that the melting of Greenland's coastal ice will raise global sea level by about 1.5 inches by 2100.

The find is important because it reveals exactly why the most vulnerable parts of Greenland ice are melting so quickly: the deep snow layer that normally captures coastal meltwater was filled to capacity in 1997. That layer of snow and meltwater has since frozen solid, so that all new meltwater flows over it and out to sea.

It's bad news, but not immediate cause for panic, said Ohio State University glaciologist Ian Howat, part of the international research team that made the discovery.

The findings apply to the comparatively small amount of ice along the coast only, he explained--not the Greenland Ice Sheet, which is the second largest ice cache in the world.

"These peripheral glaciers and ice caps can be thought of as colonies of ice that are in rapid decline, many of which will likely disappear in the near future," said Howat, associate professor of earth sciences at Ohio State. "In that sense, you could say that they're 'doomed.' However, the ice sheet itself is still not 'doomed' in the same way. The vast interior ice sheet is more climatologically isolated than the surrounding glaciers and ice caps.

"Also, since this 'tipping point' was reached in the late 90's before warming really took off, it indicates that these peripheral glaciers are very sensitive and, potentially, ephemeral relative to the timescales of response of the ice sheet."

Were all of Greenland's coastal ice to melt away at once, global sea level would rise a few inches. For comparison, were the whole Greenland Ice Sheet to melt away at once, global sea level would rise 24 feet.

The problem lies between fresh surface snow and the ice, in a layer of older snow called the firn. Normally, meltwater drains through gaps in the firn down to the ice surface, where the bottom layer re-freezes. That's how glaciers and ice caps grow.

When the firn around Greenland's edges became fully saturated 20 years ago, it froze through from bottom to top. Since then, there haven't been any gaps to capture meltwater, and the ice hasn't been able to grow.

At the time, researchers couldn't have known, because they lacked three things: a high-resolution topographic model of the glaciers, a detailed map of glacier boundaries, and a high resolution numerical model of drainage processes.

Howat provided the first two with his Greenland Ice Mapping Project Digital Elevation Model, which offers 30-meter resolution over the entire Greenland surface. Then his colleagues were able to use that data to boost the resolution of their numerical model and get a better idea of where and how the ice caps and glaciers were losing mass.

They found that, for the last 20 years, mass loss has been exactly equal to the amount of meltwater runoff lost to sea. Simulations showed that a frozen firn was the most likely cause.

The Greenland Ice Sheet is subject to the same danger, Howat said, but to a much lesser degree than the isolated bits of ice on its edges.

The real value of the study is that provides "more evidence of rapid change and how it happens," he added.
-end-
Coauthors on the paper are from Utrecht University and Delft University of Technology in the Netherlands; the University of Zurich and University of Fribourg in Switzerland; the Geological Survey of Denmark and Greenland GEUS; and the Norwegian Polar Institute.

The research was funded by the Polar Programme of the Netherlands Organization for Scientific Research, the Netherlands Earth System Science Centre, NASA, the Programme for Monitoring of the Greenland Ice Sheet and the Danish Energy Agency. All maps were designed and processed using the free geographic information system software QGIS.

Contact: Ian Howat, 614-292-6641; Howat.4@osu.edu

Written by Pam Frost Gorder, 614-292-9475; Gorder.1@osu.edu

Ohio State University

Related Ice Sheet Articles:

Thousands of meltwater lakes mapped on the east Antarctic ice sheet
The number of meltwater lakes on the surface of the East Antarctic Ice Sheet is more significant than previously thought, according to new research.
Researchers discover ice is sliding toward edges off Greenland Ice Sheet
They found that ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.
A clearer picture of global ice sheet mass
Fluctuations in the masses of the world's largest ice sheets carry important consequences for future sea level rise, but understanding the complicated interplay of atmospheric conditions, snowfall input and melting processes has never been easy to measure due to the sheer size and remoteness inherent to glacial landscapes.
Researchers discover more than 50 lakes beneath the Greenland Ice Sheet
Researchers have discovered 56 previously uncharted subglacial lakes beneath the Greenland Ice Sheet bringing the total known number of lakes to 60.
Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.
Novel hypothesis goes underground to predict future of Greenland ice sheet
The Greenland ice sheet melted a little more easily in the past than it does today because of geological changes, and most of Greenland's ice can be saved from melting if warming is controlled, says a team of Penn State researchers.
Greenland's southwest ice sheet particularly sensitive to warming
The ice fields of southwest Greenland are becoming particularly sensitive to a climate cycle called the North Atlantic Oscillation as global warming proceeds.
Antarctic ice sheet could suffer a one-two climate punch
Variations in the axial tilt of the Earth have significant implications for the rise and fall of the Antarctic Ice Sheet, the miles-deep blanket of ice that locks up huge volumes of water that, if melted, would dramatically elevate sea level and alter the world's coastlines.
The first impact crater found underneath the Greenland ice sheet
A 31-kilometer-wide impact crater underneath about a kilometer of the Hiawatha Glacier's ice is the first of its kind to be discovered in northwest Greenland, scientists report.
Moderate warming could melt East Antarctic Ice Sheet
Parts of the world's largest ice sheet would melt if Antarctic warming of just 2°C is sustained for millennia, according to international research.
More Ice Sheet News and Ice Sheet Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.