Bio-inspired energy storage: A new light for solar power

March 31, 2017

Inspired by an American fern, researchers have developed a groundbreaking prototype that could be the answer to the storage challenge still holding solar back as a total energy solution.

The new type of electrode created by researchers from RMIT University in Melbourne, Australia, could boost the capacity of existing integrable storage technologies by 3000 per cent.

But the graphene-based prototype also opens a new path to the development of flexible thin film all-in-one solar capture and storage, bringing us one step closer to self-powering smart phones, laptops, cars and buildings.

The new electrode is designed to work with supercapacitors, which can charge and discharge power much faster than conventional batteries. Supercapacitors have been combined with solar, but their wider use as a storage solution is restricted because of their limited capacity.

RMIT's Professor Min Gu said the new design drew on nature's own genius solution to the challenge of filling a space in the most efficient way possible -- through intricate self-repeating patterns known as "fractals".

"The leaves of the western swordfern are densely crammed with veins, making them extremely efficient for storing energy and transporting water around the plant," said Gu, Leader of the Laboratory of Artificial Intelligence Nanophotonics and Associate Deputy Vice-Chancellor for Research Innovation and Entrepreneurship at RMIT.

"Our electrode is based on these fractal shapes -- which are self-replicating, like the mini structures within snowflakes -- and we've used this naturally-efficient design to improve solar energy storage at a nano level.

"The immediate application is combining this electrode with supercapacitors, as our experiments have shown our prototype can radically increase their storage capacity -- 30 times more than current capacity limits.

"Capacity-boosted supercapacitors would offer both long-term reliability and quick-burst energy release - for when someone wants to use solar energy on a cloudy day for example -- making them ideal alternatives for solar power storage."

Combined with supercapacitors, the fractal-enabled laser-reduced graphene electrodes can hold the stored charge for longer, with minimal leakage. The fractal design reflected the self-repeating shape of the veins of the western swordfern, Polystichum munitum, native to western North America.

Lead author, PhD researcher Litty Thekkekara, said because the prototype was based on flexible thin film technology, its potential applications were countless.

"The most exciting possibility is using this electrode with a solar cell, to provide a total on-chip energy harvesting and storage solution," Thekkekara said.

"We can do that now with existing solar cells but these are bulky and rigid. The real future lies in integrating the prototype with flexible thin film solar - technology that is still in its infancy.

"Flexible thin film solar could be used almost anywhere you can imagine, from building windows to car panels, smart phones to smart watches. We would no longer need batteries to charge our phones or charging stations for our hybrid cars.

"With this flexible electrode prototype we've solved the storage part of the challenge, as well as shown how they can work with solar cells without affecting performance. Now the focus needs to be on flexible solar energy, so we can work towards achieving our vision of fully solar-reliant, self-powering electronics."

The research is published in Scientific Reports on Friday 31 March.
-end-


RMIT University

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.