Quantum-entangled light from a vibrating membrane

March 31, 2020

Entanglement, a powerful form of correlation among quantum systems, is an important resource for quantum computing. Researchers from the Quantum Optomechanics group at the Niels Bohr Institute, University of Copenhagen, recently entangled two laser beams through bouncing them off the same mechanical resonator, a tensioned membrane. This provides a novel way of entangling disparate electromagnetic fields, from microwave radiation to optical beams. In particular, creating entanglement between optical and microwave fields would be a key step towards solving the long-standing challenge of sharing entanglement between two distant quantum computers operating in the microwave regime. The result is now published in Nature Communications.

In a future quantum internet, that is the internet of quantum computers, entanglement needs to be shared between two distant quantum computers. This is typically done with electromagnetic links like optical fibers. Presently, one of the most advanced quantum systems is based on superconducting circuits, which work in the microwave regime. As advanced as it is, connecting such computers in networks still poses a steep challenge: microwaves can't propagate far without loss which is harmful to quantum computing tasks. One way of alleviating this problem is to first entangle microwaves with optical fields, then use optical links, with far lower loss, for long-distance communication. However, due to large difference in wavelengths (millimeters for microwaves and micrometers for light), this conversion remains a challenge.

Objects vibrate when bombarded by light particles

When an electromagnetic field, i.e. a laser beam, is reflected off a vibrating object, it can read out the vibration. This is a widely used effect in optical-based sensing. On the other hand, an electromagnetic field is composed of photons, energy bullets of light. As the light is bounced off the object, the photons bombard it, leading to additional vibration. This additional vibration is called quantum backaction. Reflection of two electromagnetic fields upon the same mechanical object provides an effective interaction between the fields. Such interaction takes place irrespective of the wavelength of the two fields. Then, this interaction can be exploited to create entanglement between the two fields, independently of their wavelengths, e.g. between microwave and optics. Though quantum backaction can be prominent for objects as small as an atom, only in recent years, researchers have been able to make macroscopic mechanical devices that are so sensitive to observe this effect.

Ultra-sensitive mechanical device mediates entanglement

In their now reported work, researchers from the Quantum Optomechanics group use a thin membrane, 3x3 mm wide, made of silicon nitride and pierced with a pattern of holes that isolates the motion of the central pad. This makes the device sensitive enough to show quantum backaction. They shine two lasers on the membrane simultaneously, where one laser sees the quantum backaction of the other, and vice versa. In this way, strong correlations, and indeed entanglement, is generated between two lasers. "You could say that the two lasers 'talk' through the motion of the membrane", says Junxin Chen, who has been working on the project during his PhD, and is one of the primary authors of the scientific article.

"The membrane oscillator functions as an interaction media, because the lasers don't talk to each other directly - the photons don't interact themselves, only through the oscillator." Junxin Chen further says, "the interaction between photons and the membrane is wavelength independent, allowing in principle microwave-optical entanglement." Further experimental work will be necessary to do this - in particular operation of the membrane at a temperature close to absolute zero, at which superconducting quantum computers work today. Experiments along these lines are underway at the Niels Bohr Institute.

University of Copenhagen

Related Quantum Computing Articles from Brightsurf:

Bringing a power tool from math into quantum computing
The Fourier transform is a mathematical operation essential to virtually all fields of physics and engineering.

New detector breakthrough pushes boundaries of quantum computing
A new paper published in Nature shows potential for graphene bolometers to become a game-changer for quantum technology

A molecular approach to quantum computing
Molecules in quantum superposition could help in the development of quantum computers.

Cosmic rays may soon stymie quantum computing
Infinitesimally low levels of radiation, such as from incoming cosmic rays, may soon stymie progress in quantum computing.

UVA pioneers study of genetic diseases with quantum computing
Scientists are harnessing the mind-bending potential of quantum computers to help us understand genetic diseases - even before quantum computers are a thing.

New method predicts spin dynamics of materials for quantum computing
Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.

Speeding-up quantum computing using giant atomic ions
An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Boson particles discovery provides insights for quantum computing
Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

Read More: Quantum Computing News and Quantum Computing Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.