Not just for bones! X-rays can now tell us about soft tissues too

March 31, 2020

We all learnt in school that the beams from x-ray machines pass right through soft tissues like skin and internal organs, but not dense materials like bones, right? Not so fast.

Researchers in Japan have figured out a way to use x-rays to tell doctors about those squishy parts as well, not just bones, in a similar way to how ultrasound or magnetic resonance imaging (MRI) work--but with much greater resolution.

This greater resolution for the field of elastography--a non-invasive method of medical imaging that investigates the stiffness and elasticity of soft tissue--should allow healthcare professionals to identify much smaller and deeper tissue problems, such as lesions, than they can with ultrasound or MRI, the two main types of elastography used currently. The scientists published their results in March in the journal Applied Physics Express.

Although previous studies have suggested such x-ray elastography is possible in principle, this is the first time that any real-world visualization of stiffness using the concept has been demonstrated.

Ultrasound uses sound waves with frequencies higher than what humans can hear, and works by sending "shear waves" through us--the sort of waves that occur when you whip a rope up and down quickly. Shear waves travel faster through stiffer tissue than through softer tissue. Since cancerous tumors, lesions from cirrhosis of the liver and hardened arteries are stiffer than the surrounding healthy tissue, identifying where the waves pass through tissue more slowly, clinicians are able to spot these stiffer tissues.

MRI works in a related fashion, but via the use of very strong magnets to force protons in the body to align with a magnetic field. How long it takes those protons to make this move tells us a similar story about stiff or hard tissues.

Now, researchers have developed a technique to do much the same with x-rays instead. The advantage? X-rays can provide much greater resolution than ultrasound--on the order of tens of micrometers (millionths of a meter) instead of millimeters (mere thousandths of a meter).

"This greater precision doesn't just mean identification of much smaller or deeper lesions," said lead researcher Wataru Yashiro, an associate professor from the Institute of Multidisciplinary Research for Advanced Materials (IMRAM) of Tohoku University, "but, importantly for patients, because smaller lesions can be newer ones, potentially also much earlier on in a disease or condition."

The next step is to further develop the technique to produce 3D visualizations, and ultimately the researchers want to manufacture x-ray elastography medical diagnostic equipment.

Tohoku University

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to