A pilot study of the sequencing of the intestinal microbiota for colon cancer

March 31, 2020

The intestinal microbiota, composed by the microorganisms that live in our intestines, can give us information about our health, since its composition may depend on factors such as the diet, the lifestyle or our pathologies. Moreover, knowing what specific bacteria are in our intestines could help to predict diseases like colon cancer. New advances in genome sequencing methods, and bioinformatics tools that allow us to analyze the data, have helped us to identify thousands of new microorganisms present in our intestines through the analysis of their genome.

A team of researchers from the Bellvitge Biomedical Research Institute (IDIBELL) and the Catalan Institute of Oncology (ICO) has carried out a pilot test in the analysis of the intestinal microbiota genome. In this study, they analyzed, by two different sequencing methods, colon biopsies and fecal samples from nine patients. The aim has been to implement sequencing techniques and bioinformatics analysis tools.

It is the first study of a project that aims to be much more extensive. The data obtained in this pilot test will serve as the basis for the design of the analysis method for the Colonbiome project. This wide project aims to find microbiota markers that can be used for the early detection of colon cancer. To do this, colon biopsies and fecal samples will be collected from healthy patients and patients in different stages of colorectal cancer. Then the microbiota's genome will be sequenced to identify differences between groups.

Data available to everyone

All the data obtained in this pilot study has been entered into the European Nucleotide Archive, a public and collaborative database, where all types of genomic sequences are shared for the benefit of the entire scientific community. In addition, all the results of this first pilot test have been published in the Scientific Data journal, also a public journal, where both the sequences and the bioinformatics analysis methods used are detailed.

This study not only aims to be useful for the future work of the group, but it also aims to be helpful for all research groups that are carrying out similar analyses or trying new bioinformatics tools, who have open access to all the results obtained in this study. In addition, the researchers assure that they will also make public all the details of the subsequent studies, to continue contributing to collaboration and progress in the field.

The two sequencing methods

Two sequencing methods were compared in the study: the 16s and the Shotgun. The first is focused on the sequence of a single gene of the microorganisms, while the second gives us the complete sequence of the entire genome. Although the sequencing of a single gene implicates less sensibility, it can be cheaper. Furthermore, sequencing a gene only present in the microbiota allows us to analyze biopsy samples without the interference of the human genome. Additionally, the pilot test has shown that both techniques are consistent. Although complete sequencing is more sensitive and can distinguish more species of microorganisms, the results are not contradictory to single-gene sequencing.

IDIBELL-Bellvitge Biomedical Research Institute

Related Colon Cancer Articles from Brightsurf:

New prognostic markers for colon cancer identified
The study recently published by MedUni Vienna and collaborative partners nominates ILSs as novel prognostic players orchestrating the pathobiology of metastatic colorectal cancer.

Turning colon cancer cells around
Using a modified natural substance along with current approaches could improve colon cancer treatment, according to findings by University of California, Irvine biologists.

Uncovering the pathway to colon cancer
The hidden world of genetic changes, or mutations, in healthy colon tissue has been uncovered by scientists at the Wellcome Sanger Institute and their collaborators.

Colon cancer growth reduced by exercise
Exercise may play a role in reducing the growth of colon cancer cells according to new research published in The Journal of Physiology.

Towards a better understanding of how colon cancer develops and progresses
Researchers from the University of Luxembourg have discovered a molecular mechanism that is responsible for the spread of cancer cells in the body and the development of metastases in patients with colon cancer.

New target protein for colon cancer identified
Researchers at Boston University School of Medicine (BUSM) have identified a new potential target protein (c-Cbl) they believe can help further the understanding of colon cancer and ultimately survival of patients with the disease.

Colon cancer -- Targeting tumor cell plasticity
Cell type switch helps colon cancer evade treatment, a study suggests.

A bacterial duo linked to colon cancer
Scientists have identified a combination of bacteria that appears to increase the risk of colon cancer.

New model could speed up colon cancer research
Using the CRISPR gene editing system, MIT researchers have shown they can generate colon tumors in mice that very closely resemble human colon tumors, an advance that should allow scientists to learn more about how the disease progresses and also help them test potential new drugs.

Are dialysis patients being over-screened for colon cancer?
Colonoscopies are being performed more often on healthier dialysis patients than on those with more limited life expectancies; however, overall, dialysis patients are being screened at a much higher rate relative to their life expectancy than their counterparts without kidney failure.

Read More: Colon Cancer News and Colon Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.