Autophagy: Scientists discover novel role for self-recycling process in the brain

March 31, 2020

Scientists from the laboratory of Dr. Natalia Kononenko at the CECAD Center of Excellence in Aging Research at the University of Cologne have found out that autophagy - the process of cellular self-recycling, or waste clearance - is dispensable for the survival of the neurons in mice. The new findings suggest that autophagy in fact also fulfils a different important function: The proteins classically associated with waste clearance in cells regulate the speed of intracellular transport. This transport is achieved by microscopic hollow tubes, so-called microtubules. The article 'Autophagy lipidation machinery regulates axonal microtubule dynamics but is dispensable for survival of mammalian neurons' appeared in the current issue of Nature Communications.

Autophagy cleans the cells by breaking down and removing the damaged proteins and organelles, cell areas with a specific function. It is hardly surprising that this process is particularly important for long-lived cells such as neurons, since neurons are no longer capable of cell division ('post-mitotic') and are therefore particularly vulnerable to accumulating unfavorable proteins and damaged organelles. In their new study, the scientists show that neurons in the mouse brain do not need autophagy to survive. Instead, these specialized cells use autophagy proteins to regulate the microtubule-dependent transport of molecules crucial for learning and memory.

The fact that autophagy is crucial for the well-being of the brain is supported by scientific discoveries made over the last decade. Many studies have identified defective autophagy as one of the pathological causes of neurodegenerative diseases, including Alzheimer's (AD), Parkinson's and Huntington's disease. In this context, the novel function of autophagy the scientists discovered suggests that the therapeutic modulations of autophagy activity in patients might not only promote the waste clearance in the brain, but also alter the cognitive abilities by changing the efficiency of the intracellular transportation system.
-end-


University of Cologne

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.