Antibody therapy can increase the effectiveness of cancer vaccine, early studys

April 01, 2003

BOSTON -- The benefit of some cancer vaccines may be boosted by treating patients with an antibody that blocks a key protein on immune system T cells, according to a small, preliminary study led by researchers at Dana-Farber Cancer Institute and Brigham and Women's Hospital.

The study, to be published online on April 1 in the Early Edition of the Proceedings of the National Academy of Sciences (www.pnas.org), tested the effect of a single injection of the antibody MDX-CTLA4 in nine patients who had previously been treated with cancer vaccines for either metastatic melanoma or metastatic ovarian cancer. The result, in every patient who had received a particular kind of vaccine, was widespread death of cancer cells and an increase in the number of immune system cells within the tumors - evidence of a potent immune system attack.

"This study makes a strong case that combined immunotherapy - consisting of a vaccine and antibodies - can elicit a potent immune response to some types of tumors in patients," says the study's senior author, Glenn Dranoff, MD, of Dana-Farber.

The technique was inspired by the laboratory work of study co-author James Allison, PhD, a Howard Hughes Medical Institute investigator at the University of California, Berkeley. He and his colleagues discovered that a protein, or antigen, called CTLA-4 on T cells restrains the immune system from attacking cancer cells. In a series of laboratory and animal experiments, Allison's team showed that combining a cancer vaccine with an antibody able to block CTLA-4 resulted in an especially potent immune attack on tumors.

On the basis of those findings, Dranoff and his colleagues launched a Phase I clinical trial of the technique in a small group of patients. Because animal experiments had indicated that giving MDX-CTLA4 in combination with a vaccine might prompt the immune system to attack some normal cells, researchers decided to give the antibody to patients who had already been vaccinated.

Seven of the study participants had metastatic melanoma, a potentially fatal cancer that originates in skin cells, and two had metastatic ovarian cancer. In all three melanoma patients who had been treated with one form of vaccine, tumors showed extensive signs of cell death and were saturated with large numbers of tumor-fighting immune cells. The same results were seen in the two ovarian cancer patients who had been treated with the same type of vaccine. (The vaccine is created by loading tumor cells with a gene called GM-CSF that alerts the immune system to the tumors' presence, prompting an anti-tumor attack.)

Of the four melanoma patients who had received a different type of vaccine based on melanoma antigens, none experienced a similar benefit, researchers found.

While none of the study participants had serious reactions to the antibody itself, some of the melanoma patients developed a mild immune reaction against normal skin cells called melanocytes, but it was not a dangerous side effect.

Previous clinical trials have shown that vaccines can be at least temporarily effective in treating metastatic melanoma and ovarian cancer, but most patients eventually succumb to their disease. One of the reasons for this may be that the CTLA-4 molecule gradually weakens the immune system's ability to recognize and respond to tumor cells.

"By blockading CTLA-4 with antibodies, we had hoped to strengthen the immune response produced by cancer vaccines," remarks Dranoff, who is also an associate professor of medicine at Harvard Medical School and a Leukemia and Lymphoma Society clinical scholar. "Work in the laboratory and in animal models suggested that this approach could be effective. The new study offers the first evidence that the technique has promise in human patients, although much more study will be needed to demonstrate that this is the case."

The study's lead author is Stephen Hodi, MD, of Dana-Farber. Other co-authors were from Massachusetts General Hospital, Massachusetts Eye and Ear Infirmary, Harvard Medical School, and Mederex, Inc.
-end-
Funding for the research was provided in part by the Berlex Oncology Foundation, National Institutes of Health, the Leukemia and Lymphoma Society, the Cancer Research Institute, and Mederex, Inc.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Dana-Farber Cancer Institute

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.