Nav: Home

Feeding the world: Uncovering a key regulator of flower head development in rice

April 01, 2016

Rice is a staple food for more than 3.5 billion people worldwide. Meeting the demand for high-yielding rice is an urgent task for breeders. Superior, high-yielding hybrid plants are often produced by crossing two diverse parental lines. This task is quite complicated in rice, a self-pollinating plant. One approach to solving this problem originated in the 1970s, when Chinese scientists figured out how to produce male sterile (MS) rice lines. The use of MS lines allows breeders to perform controlled pollination, leading to successful hybrid rice production. Unfortunately, in these MS lines, the panicle (flower head) often remains enclosed in the surrounding leaf sheath because the region of the stem that supports it (the uppermost internode) is short, leading to blocked pollination and reduced seed production. To allow panicles to elongate and emerge from the leaf sheath, breeders use rice plants with a mutation in the gene ELONGATED UPPERMOST INTERNODE1 (EUI1), which encodes an enzyme that deactivates the plant hormone gibberellin (GA). This deactivation allows GA to stimulate uppermost internode extension, leading to panicle extension, as well as increased plant height. Understanding what regulates the enzyme EUI1 in normal (wild type) plants is crucial, as according to Dr. Chengcai Chu of the Chinese Academy of Sciences, "A further understanding of the molecular mechanism through which EUI1 activity is regulated during development will provide a more flexible way to fine-tune panicle extension, which may greatly help breeders improve hybrid rice seed production".

By isolating and exhaustively analyzing a dwarf mutant with impaired panicle extension, Dr. Chu and colleagues uncovered a critical regulator of EUI1 gene expression in rice, as discussed in this week's issue of The Plant Cell. This regulator, HOX12, binds directly to regulatory elements of the EUI1 gene, functioning as a transcription factor, or central regulator. The scientists propose that HOX12 helps regulate plant growth in response to environmental cues through its effect on EUI1, which acts as a switch to regulate the migration of floral-derived GA from the panicle to the stem. The next step will be to determine the upstream initiators of the HOX12-EUI1 regulatory cascade and the physiological conditions under which these modulations occur.
-end-
Author:

Jennifer A. Lockhart, PhD jlockhart@aspb.org
Science Editor, The Plant Cell
http://orcid.org/0000-0002-1394-8947
Tel: 919-360-7699

This research was supported by grants from the National Natural Science Foundation of China (31430063, 91335203), Transgenic Research Program of the Ministry of Agriculture (2014ZX08001-004-001), and the State Key Laboratory of Plant Genomics.

Full citation: Gao, S., Fang, J., Xu, F., Wang, W., and Chu, C. (2016). Rice HOX12 Regulates Panicle Exsertion by Directly Modulating the Expression of ELONGATED UPPERMOST INTERNODE1. Plant Cell 10.1105/tpc.15.01021.

Publication date: March 14, 2016, at http://www.plantcell.org/content/early/2016/03/14/tpc.15.01021.full.pdf+html

About the researchers: To arrange an interview with Dr. Chengcai Chu of the Chinese Academy of Sciences, please contact ccchu@genetics.ac.cn

About The Plant Cell: Published monthly by ASPB, The Plant Cell is the highest-ranking primary research journal in plant biology. The Plant Cell publishes novel research in plant biology, especially in the areas of cellular biology, molecular biology, genetics, development, and evolution. The primary criteria for publication are that the article provides new insight that is of broad interest to plant biologists, not only to specialists, and that the presentation of results is appropriate for a wide audience.

About ASPB: ASPB is a professional scientific society, headquartered in Rockville, Maryland, devoted to the advancement of the plant sciences worldwide. With a membership of almost 5000 plant scientists from throughout the United States and more than 50 other nations, the Society publishes two of the most widely cited plant science journals: The Plant Cell and Plant Physiology. For more information about ASPB, please visit http://www.aspb.org/. Also follow ASPB on Facebook at facebook.com/myASPB and on Twitter @ASPB.

Figure credit: Nam-Chon Paek, Chinese Academy of Sciences.

Restrictions: Use for noncommercial, educational purposes is granted without written permission. Please include a citation and acknowledge ASPB as copyright holder. For all other uses, contact diane@aspb.org.

Key words: Crop yield, plant science, rice, agriculture, plant development, hybrid

American Society of Plant Biologists

Related Rice Articles:

New rice fights off drought
Scientists at the RIKEN Center for Sustainable Resource Science (CSRS) have developed strains of rice that are resistant to drought in real-world situations.
Domesticated rice goes rogue
We tend to assume that domestication is a one-way street and that, once domesticated, crop plants stay domesticated.
Protecting rice crops at no extra cost
A newly identified genetic mechanism in rice can be utilized to maintain resistance to a devastating disease, without causing the typical tradeoff -- a decrease in grain yield, a new study reports.
Every grain of rice: Ancient rice DNA data provides new view of domestication history
Now, using new data collected samples of ancient, carbonized rice, a team of Japanese and Chinese scientists have successfully determined DNA sequences to make the first comparisons between modern and ancient rice.
Four newly identified genes could improve rice
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture.
Infants who ate rice, rice products had higher urinary concentrations of arsenic
Although rice and rice products are typical first foods for infants, a new study found that infants who ate rice and rice products had higher urinary arsenic concentrations than those who did not consume any type of rice, according to an article published online by JAMA Pediatrics.
New resource for managing the Mexican rice borer
A new article in the Journal of Integrated Pest Management provides information on the biology and life cycle of the Mexican rice borer (Eoreuma loftini), and offers suggestions about how to manage them.
Fighting rice fungus
Plant scientists are uncovering more clues critical to disarming a fungus that leads to rice blast disease and devastating crop losses.
The origin and spread of 'Emperor's rice'
Black rice was prized in ancient times for its color and is prized in modern times for its high levels of antioxidants, but its early history has been shrouded in mystery until now.
Trigger found for defense to rice disease
Biologists have discovered how the rice plant's immune system is triggered by disease, in a discovery that could boost crop yields and lead to more disease-resistant types of rice.

Related Rice Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".