Nav: Home

Artificial molecules

April 01, 2016

Scientists at ETH Zurich and IBM Research Zurich have developed a new technique that enables for the first time the manufacture of complexly structured tiny objects joining together microspheres. The objects have a size of just a few micrometres and are produced in a modular fashion, making it possible to program their design in such a way that each component exhibits different physical properties. After fabrication, it is also very simple to bring the micro-objects into solution. This makes the new technique substantially different from micro 3D printing technology. With most of today's micro 3D printing technologies, objects can only be manufactured if they consist of a single material, have a uniform structure and are attached to a surface during production.

To prepare the micro-objects, the ETH and IBM researchers use tiny spheres made from a polymer or silica as their building blocks, each with a diameter of approximately one micrometre and different physical properties. The scientists are able to control the particles and arrange them in the geometry and sequence they like.

The structures that are formed occupy an interesting niche in the size scale: they are much larger than your typical chemical or biochemical molecules, but much smaller than typical objects in the macroscopic world. "Depending on the perspective, it's possible to speak of giant molecules or micro-objects," says Lucio Isa, Professor for Interfaces, Soft matter and Assembly at ETH Zurich. He headed the research project together with Heiko Wolf, a scientist at IBM Research. "So far, no scientist has succeeded in fully controlling the sequence of individual components when producing artificial molecules on the micro scale," says Isa.

Diverse range of applications

With the new method, it is possible to manufacture micro-objects with precisely defined magnetic, non-magnetic and differently charged areas. Currently, the scientists can create small rods of varying lengths and composition, tiny triangles and basic three-dimensional objects. But the researchers are keen to develop the technique further. As possible future applications, they are considering self-propelled micro-carriers that move in an external electric field thanks to their sophisticated geometry and material composition.

Other possibilities include micro-mixers for lab-on-a-chip applications or, in the distant future, even micro-robots for biomedical applications which can grab, transport and release other specific micro-objects. Additionally, the researchers could design their artificial molecules so that they interact with each other and assemble together independently into larger 'superstructures'. This would be for instance relevant for photonics (light-based signal processing). "Customised micro-structures are required in photonics. These could one day be manufactured with our components," says Isa.

Production with micro-templates

To manufacture a large number of identical micro-objects at the same time, the scientists use polymer templates with indentations engraved in the form of the object they want to produce. The researchers developed a method that allows them to deposit one tiny sphere at a time during each step of the procedure. They can build up larger objects sequentially, choosing the type of sphere for each step. At the end, they connect the tiny spheres together by briefly heating them.

In the current development phase, the tiny spheres are firmly connected to one another, but in the future, the researchers would like to try to connect them with 'soft bonds'. This would make it possible to use the objects as large-scale models for chemical and biochemical compounds, for instance to study protein folding on an experimental level. The researchers would also like to attempt to assemble the objects with tiny spheres made from materials other than plastic or silica. "In principle, our method can be adapted to any material, even metals," says Isa.
-end-
Reference

Ni S, Leemann J, Buttinoni I, Isa L, Wolf H: Programmable colloidal molecules from sequential capillarity-assisted particle assembly, Science Advances, 1 April 2016, doi: 10.1126/sciadv.1501779 [http://dx.doi.org/10.1126/sciadv.1501779]

ETH Zurich

Related Scientists Articles:

Scientists have found longevity biomarkers
An international group of scientists studied the effects of 17 different lifespan-extending interventions on gene activity in mice and discovered genetic biomarkers of longevity.
Coaching scientists to play well together
When scientists from different disciplines collaborate -- as is increasingly necessary to confront the complexity of challenging research problems -- interpersonal tussles often arise.
Scientists proposed a novel configuration of nanoscopes
TPU scientists proposed using special diffraction gratings with gold plates instead of microlenses to accelerate the generation of images from nanoscopes without losing any magnification power.
Children grow in a different way, scientists demonstrate
An international group of scientists under the supervision of a staff member of Sechenov University (Russia) and Karolinska Institute (Sweden) found out that earlier views on the mechanisms that provide and regulate skeletal growth were wrong.
'Doing science,' rather than 'being scientists,' more encouraging to girls
Asking young girls to 'do science' leads them to show greater persistence in science activities than does asking them to 'be scientists,' finds a new psychology study by researchers at New York University and Princeton University.
More Scientists News and Scientists Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...