Growing skin in the lab

April 01, 2016

Using reprogrammed iPS cells, scientists from the RIKEN Center for Developmental Biology (CDB) in Japan have, along with collaborators from Tokyo University of Science and other Japanese institutions, successfully grown complex skin tissue--complete with hair follicles and sebaceous glands--in the laboratory. They were then able to implant these three-dimensional tissues into living mice, and the tissues formed proper connections with other organ systems such as nerves and muscle fibers. This work opens a path to creating functional skin transplants for burn and other patients who require new skin.

Research into bioengineered tissues has led to important achievements in recent years--with a number of different tissue types being created--but there are still obstacles to be overcome. In the area of skin tissue, epithelial cells have been successfully grown into implantable sheets, but they did not have the proper appendages--the oil-secreting and sweat glands--that would allow them to function as normal tissue.

To perform the work, published in Science Advances, the researchers took cells from mouse gums and used chemicals to transform them into stem cell-like iPS cells. In culture, the cells properly developed into what is called an embryoid body (EB)?a three-dimensional clump of cells that partially resembles the developing embryo in an actual body. The researchers created EBs from iPS cells using Wnt10b signaling and then implanted multiple EBs into immune-deficient mice, where they gradually changed into differentiated tissue, following the pattern of an actual embryo. Once the tissue had differentiated, the scientists transplanted them out of those mice and into the skin tissue of other mice, where the tissues developed normally as integumentary tissue?the tissue between the outer and inner skin that is responsible for much of the function of the skin in terms of hair shaft eruption and fat excretion. Critically, they also found that the implanted tissues made normal connections with the surrounding nerve and muscle tissues, allowing it to function normally.

One important key to the development was that treatment with Wnt10b, a signaling molecule, resulted in a larger number of hair follicles, making the bioengineered tissue closer to natural tissue.

According to Takashi Tsuji of the RIKEN Center for Developmental Biology, who led the study, "Up until now, artificial skin development has been hampered by the fact that the skin lacked the important organs, such as hair follicles and exocrine glands, which allow the skin to play its important role in regulation. With this new technique, we have successfully grown skin that replicates the function of normal tissue. We are coming ever closer to the dream of being able to recreate actual organs in the lab for transplantation, and also believe that tissue grown through this method could be used as an alternative to animal testing of chemicals."
-end-


RIKEN

Related Hair Follicles Articles from Brightsurf:

Your hair knows what you eat and how much your haircut costs
University of Utah researchers find that stable isotopes in hair reveal a divergence in diet according to socioeconomic status (SES), with lower-SES areas displaying higher proportions of protein coming from cornfed animals.

Hair in 'stress': Analyze with care
Similar to humans, wild animals' reaction to disturbance is accompanied by releasing hormones, such as cortisol.

It's always a good hair day for Leptothrix cholodnii
A team led by researchers from the University of Tsukuba found that tiny hair-like structures, called nanofibrils, grown by aquatic bacterium Leptothrix cholodnii are essential for surface attachment and the formation of long bacterial filaments.

Study of elephant, capybara, human hair finds that thicker hair isn't always stronger
Despite being four times thicker than human hair, elephant hair is only half as strong -- that's just one finding from researchers studying the hair strength of many different mammals.

Some skin cancers may start in hair follicles
Some of the most deadly skin cancers may start in stem cells that lend color to hair, and originate in hair follicles rather than in skin layers.

New technique may reveal the health of human hair follicles
A new method developed by investigators at Massachusetts General Hospital (MGH) recently examines the activity of hair follicles and could be useful for testing the effects of different treatments on hair growth.

Biomarker for schizophrenia can be detected in human hair
Working with model mice, post-mortem human brains, and people with schizophrenia, researchers at the RIKEN Center for Brain Science in Japan have discovered that a subtype of schizophrenia is related to abnormally high levels hydrogen sulfide in the brain.

How roots grow hair
The roots of plants can do a lot of things: They grow in length to reach water, they can bend to circumvent stones, and they form fine root hairs enabling them to absorb more nutrients from the soil.

Functional hair follicles grown from stem cells
Scientists from Sanford Burnham Prebys have created natural-looking hair that grows through the skin using human induced pluripotent stem cells (iPSCs), a major scientific achievement that could revolutionize the hair growth industry.

Using 3D-printing to stop hair loss
Columbia researchers have created a way to grow human hair in a dish, which could open up hair restoration surgery to more people, including women, and improve the way pharmaceutical companies search for new hair growth drugs.

Read More: Hair Follicles News and Hair Follicles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.