Nav: Home

Engineered monomeric streptavidin

April 01, 2016

A team of researchers from the University at Buffalo in Amherst, NY have successfully engineered a novel variant of streptavidin that forms a stable monomer and is capable of monovalent biotin detection. Streptavidin is broadly used for detection of biotinylated ligands but may cause target crosslinking that can interfere with observations at a molecular level. The engineered streptavidin monomer (mSA) binds biotinylated targets without crosslinking because it has only one biotin binding site. As a structural monomer, mSA can also be genetically fused to another protein to form a biotin binding tag. The binding of a biotinylated ligand to the fused mSA domain is useful in various biochemical and cell biology studies. The optimization of mSA design and its potential applications in labeling and protein-protein interaction studies are described in the forthcoming 2016 issue of the journal TECHNOLOGY.

"The native streptavidin-biotin interaction has limitations stemming from the obligate tetrameric structure of streptavidin. A small, single domain protein that binds biotin, such as mSA, extends the utility of the streptavidin-biotin system by allowing monovalent biotin detection and creation of genetic fusions," says Professor Sheldon Park, Ph.D., of the University at Buffalo and Principal Investigator on the paper.

Streptavidin and its homologs all form oligomers, making it difficult to use them as genetic fusions. The group had previously reported the engineering of a stable monomeric protein that binds biotin with low nM affinity and demonstrated that the molecule can be fused to GFP to create a bi-functional molecule. In this study, the group optimized the design and demonstrated how the engineered molecule may be used in biotechnology. A significant improvement in the binding characteristics of mSA includes stabilization of the biotin bound complex to achieve consistent labeling of biotinylated targets over time. For example, using mSA conjugated to a fluorophore, biotinylated receptors on the cell surface can be stably, and specifically, labeled over a period of 1 hour with little loss of signal, which should be useful during fluorescence microscopy studies.

Unlike oligomeric streptavidin, mSA can be readily fused to a protein of interest (POI) to construct a recombinant tag for biotin binding. The current study explores the use of mSA fusion in proximity de-pendent biotinylation--a technique that has been shown to be useful in proteomics research. Proximity dependent biotinylation utilizes enzymatic or chemical methods to selectively biotinylate the molecules that interact with POI, so that they can be affinity purified using immobilized streptavidin. The authors demonstrated that the mSA tag can be used to recruit a reactive biotin species and achieve specific biotinylation of the molecules that directly or indirectly interact with. Since only co-localization with mSA is required for this to work, direct fusion to mSA is not needed. Instead, mSA may be recruited to the POI through a series of noncovalent interactions, for example, with an antibody, in order to target interacting molecules for biotinylation. The design affords a high level of modularity and works on molecules that interact only transiently, such as an enzyme and its substrate.

The team from UB is working to further reduce the rate of biotin dissociation in order to optimize the labeling efficiency even more. To this end, the crystal structure of mSA (PDB 4JNJ) is used to model the effects of various mutations before they are tested in the lab. The improved biochemical characteristics of mSA and its significantly smaller size (roughtly 25% of streptavidin) create new opportunities in biotechnology by leveraging existing infrastructure and ubiquity of the streptavidin-biotin system to study new interactions.
Additional co-authors of the TECHNOLOGY paper are Jasdeep K. Mann, Daniel Demonte, and Christopher M. Dundas, all from the Department of Chemical and Biological Engineering at the University at Buffalo.

Corresponding author for this study in TECHNOLOGY is Professor Sheldon Park, Ph.D.,

World Scientific

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
A protein makes the difference
It is well-established knowledge that blood vessels foster the growth of tumors.
Nuclear protein causes neuroblastoma to become more aggressive
Aggressive forms of neuroblastoma contain a specific protein in their cells' nuclei that is not found in the nuclei of more benign forms of the cancer, and the discovery, made through research from the University of Rochester Medical Center, could lead to new forms of targeted therapy.
How a protein could become the next big sweetener
High-fructose corn syrup and sugar are on the outs with calorie-wary consumers.
High animal protein intake associated with higher, plant protein with lower mortality rate
The largest study to examine the effects of different sources of dietary protein found that a high intake of proteins from animal sources -- particularly processed and unprocessed red meats -- was associated with a higher mortality rate, while a high intake of protein from plant sources was associated with a lower risk of death.
Protein in, ammonia out
A recent study has compiled and analyzed data from 25 previous studies.

Related Protein Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...