Nav: Home

Nanoparticle treatment could improve immunotherapy against cancer

April 01, 2017

Researchers at the University of North Carolina Lineberger Comprehensive Cancer Center have discovered a potential novel strategy for improving drugs that unleash the immune system against cancer -- by binding two compounds to a nanoparticle.

"Our data shows that two compounds on a single nanoparticle will make immunotherapy treatments even more effective," said the study's senior author Andrew Wang, MD, a UNC Lineberger member and associate professor in the UNC School of Medicine Department of Radiation Oncology.

In preliminary findings that will be presented Sunday, April 2, at the American Association for Cancer Research Annual Meeting 2017, researchers report on a preclinical study into the use of nanoparticles to improve the efficacy of immunotherapy drugs known as checkpoint inhibitors. They are using the nanoparticles to pair immunotherapy treatments with a type of investigational compound known as a T-cell agonist.

T-cells, which are a type of immune cell, do not naturally attack cancer cells because they don't recognize cancer cells as invaders. T-cells have "checkpoints" that act like a traffic red light to ensure they don't attack things inside the body that should be left alone. A checkpoint inhibitor removes the red light so T-cells can attack cancer cells, but this might not be enough to help the immune system win the battle against cancer. To improve the T-cell response to cancer, researchers are drawing upon a potential treatment under investigation called a T-cell agonist, which is designed to increase T-cell activation, and enable immune cells to kill cancer cells more effectively.

"Some agents help T-cells with proliferation and survival, while others overcome the T-cells' self-regulation and inhibition," said the study's first author Yu Mi, PhD, a postdoctoral research associate in the UNC School of Medicine Department of Radiation Oncology. "Nanoparticles provide us with a tool to co-deliver different agents to T-cells so they will be activated by both of the agents at the same time."

Wang's group used a nanoparticle to combine a "red light" checkpoint inhibitor with a "green light" T-cell agonist that energizes the T-cells. This green light is an investigational OX40 agonist.

"The inhibitor takes away the red lights, but for T-cells to go, you also need green lights," Wang said.

To deliver them both at the same time, Wang's group attached them to a nanoparticle.

With the combined investigational nanoparticle treatment, the researchers reported improved stimulation of T-cells and better survival rates in preclinical models.

"We found that the therapeutic effect of nanoparticles is far better than the mixture of free agents," Mi said.
In addition to Mi and Wang, other authors include Christof Smith, Feifei Yang, Johnathan Serody, and Benjamin Vincent.

The study was supported by the National Cancer Institute.

UNC Lineberger Comprehensive Cancer Center

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...