Nav: Home

Russian scientists found out how a male-hating bacterium rejuvenates

April 01, 2019

A team from Immanuel Kant Baltic Federal University together with their Russian colleagues carried out genetic analysis of the symbiotic bacterium Wolbachia that prevents the birth and development of males in different species of arthropods. It turned out that the microorganisms exchanged their genes to rejuvenate. The results of the study were published in the Molecular Phylogenetics and Evolution journal.

Different species may have different relationships with each other: some compete for limited resources, and some feed off their hosts. Nevertheless, if two species cohabitate in some way, it is called symbiosis, and its participants are symbionts. Some symbionts can be inherited.

The Wolbachia bacterium is the most widespread symbiont in the biosphere. Many arthropods and some nematode worms have it. The bacterium lives in the reproductive tissues and is inherited from mother to progeny via the oocytes of infected females. Scientists believe that currently these bacteria are being transformed into a new cell organelle.

Wolbachia manipulates the reproductive process of its host. For example, it may "forbid" infected males to inseminate healthy females to prevent them from getting offsprings. All embryos die on early stages of development, and scientists are still unable to understand how the bacteria manage to do it. In other species the bacterium increases the share of females in the population to spread the infection. To do so, it feminizes genetic males or causes thelytokous parthenogenesis -- a process when female progeny is produced without insemination. However, sometimes Wolbachia can be very useful for its host: it synthesizes vitamins and suppresses harmful mutations and even some viruses.

According to the scientists, these bacteria can be very different from the genetic point of view in one host species and very similar -- in different ones. It indicates that the bacterium has several individual symbiotic relations. So, there are several supergroups -- phyletic lines or tribes of Wolbachia.

Although the bacterium has been discovered in 1924, a lot is still unknown about it, including the beginning of its symbiosis with arthropods and the mechanism of its transmission from one species to another. Moreover, how it controls the reproductive system of its host is also unclear.

Previously the authors of the work analyzed phylogenetic relations between different Wolbachia strains and discovered many contradictions in its evolutionary history. They are associated with large-scale horizontal gene transfer -- a process in which an organism transfers its genetic material to another organism that is not its progeny. For example, many centuries ago plants allowed photosynthesizing cyanobacteria to leave in their cells. With time they turned into chloroplasts and transferred a lot of genes to their hosts genomes.

To identify the phylogenetic relations the authors had used a special approach -- they classified different Wolbachia bacteria by alleles (variations) of each gene and looked for irregular accumulation of nucleotide substitutions. In the course of this work the authors studied Wolbachia in mosquitoes using the same method, i.e. by comparing their alleles to the alleles of the same bacteria in other species. They had to understand where the mosquitos got the symbiont from.

"We analyzed genetic profiles of different Wolbachia supergroups and concluded that the bacteria in mosquitoes are very similar to those found in lepidopteras and in one case also in ants. We don't know yet why it happened. However, we assume the bacteria may be transferred by the ticks that live on the bodies of these insects", said Yury Ilinsky, a co-author of the work, PhD in Biology, and a specialist of Immanuel Kant Baltic Federal University.

The scientists found out that different Wolbachia bacteria exchange genetic information. This way they can rejuvenate and therefor mend their broken genes. The exchange usually takes place among the bacteria of the same supergroup, but sometimes remote bacteria are involved as well. It means that the bacterium changes hosts more often than the scientists believed, and also that it's older than previously estimated.

"Our global goal is to understand the pattern of genetic distribution of Wolbachia in arthropods. After that we would like to understand how and at what rate it changes hosts", concluded Yury Ilinsky.

The participants of the work also represented Lomonosov Moscow State University, Sechenov First Moscow State Medical University, and Vavilov Institute of General Genetics of RAS.
-end-


Immanuel Kant Baltic Federal University

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.