Nav: Home

The evolution of bird-of-paradise sex chromosomes revealed

April 01, 2019

Birds-of-paradise are a group of songbird species, and are known for their magnificent male plumage and bewildering sexual display. Now, an international collaborative work involving Dept. of Molecular Evolution and Development of University of Vienna, Zhejiang University of China, and Swedish Museum of Natural History analyzed all together 11 songbird species genomes, including those of five bird-of-paradise species, and reconstructed the evolutionary history of their sex chromosomes.

Birds have an opposite type of sex chromosomes to that of mammals. That is, females have one Z chromosome and one female-specific W chromosome, while males have two Z chromosomes. The W chromosome is much smaller and gene-poor, similar to the Y chromosome of human. By sequencing the female songbird genomes, the researchers now uncovered the details of how Z and W chromosomes had become separated for their evolutionary trajectories, and which factors dictate the fates of the genes on the W chromosome.

Junk DNA facilitated the separation of sex chromosomes

Sex chromosomes are not supposed to have genetic exchange with each other for most of the regions. That is, they evolve along separate evolutionary trajectories; so that sex-determining genes will not be recombined from one sex chromosome to the other, then appear in the opposite sex. The researchers showed that such suppression of recombination has occurred at four time points between the songbird sex chromosomes. This has reshaped four consecutive sex-linked regions to form a gradient of time-associated divergence pattern, termed 'evolutionary strata'. Despite the dramatically diverse phenotypes of all extant 5,000 songbird species, all of them seem to share the same evolutionary history of these recombination suppression events. What has caught the attention of the researchers is, one family of repetitive elements (called 'CR1 transposon'), presumably non-functional DNA sequences have massively accumulated at a mutation hotspot located between the two neighboring evolutionary strata. This brought the hypotheses that junk DNAs may have triggered the loss of recombination between sex chromosomes, and subjected them for separate evolution paths.

Only dosage-sensitive genes survived on the W chromosome

Once recombination is lost on the W chromosome (Z chromosomes can still recombine only in males), genes cannot resist the invasion of deleterious mutations, as normally they can be effectively purged by recombination. This is the price of sex that the sex chromosome (either the human Y or the bird W) has to pay. Nowadays only a handful of genes are retained functional on the songbird W chromosomes due to such long-term genetic erosion. The researchers found the retained genes tend to be more broadly or highly expressed than any other genes that have become lost in non-avian species, where both sets of genes still exist. This indicates that the retained genes have more important functions than others, and losing them, even when the Z-linked gene still exists in female, is too costly for the species to bear a reduced dosage.
Publication in Nature Ecology & Evolution
Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds. Luohao Xu et al., Nature Ecology & Evolution
DOI: 10.1038/s41559-019-0850-1

University of Vienna

Related Chromosomes Articles:

X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.
How chromosomes change their shape during cell differentiation
Scientists from the RIKEN Center for Biosystems Dynamics Research have provided an explanation of how chromosomes undergo structural changes during cell differentiation.
Key similarities discovered between human and archaea chromosomes
A study led by Indiana University is the first to reveal key similarities between chromosomes in humans and archaea.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Human artificial chromosomes bypass centromere roadblocks
Human artificial chromosomes (HACs) could be useful tools for both understanding how mammalian chromosomes function and creating synthetic biological systems, but for the last 20 years, they have been limited by an inefficient artificial centromere.
Does rearranging chromosomes affect their function?
Molecular biologists long thought that domains in the genome's 3D organization control how genes are expressed.
Super-resolution microscopy illuminates associations between chromosomes
Thanks to super-resolution microscopy, scientists have now been able to unambiguously identify physical associations between human chromosomes.
B chromosome first -- mechanisms behind the drive of B chromosomes uncovered
B chromosomes are supernumerary chromosomes, which often are preferentially inherited and showcase an increased transmission rate.
Dark centers of chromosomes reveal ancient DNA
Geneticists exploring the dark heart of the human genome have discovered big chunks of Neanderthal and other ancient DNA.
Reading the dark heart of chromosomes
A new study publishing May 14, 2019 in the open-access journal PLOS Biology by the Mellone lab at the University of Connecticut and the Larracuente lab at the University of Rochester combine cutting-edge sequencing technology with molecular and high-resolution microscopy methods to discover the sequences of all centromeres in the fruit fly Drosophila melanogaster, a powerful model organism widely used in biomedical research.
More Chromosomes News and Chromosomes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.