Nav: Home

URI researcher calculates temperature inside moon to help reveal its inner structure

April 01, 2019

KINGSTON, R.I. - April 1, 2019 - Little is known about the inner structure of the Moon, but a major step forward was made by a University of Rhode Island scientist who conducted experiments that enabled her to determine the temperature at the boundary of the Moon's core and mantle.

She found the temperature to be between 1,300 and 1,470 degrees Celsius, which is at the high end of an 800 degree range that previous scientists had determined.

"In order to understand the interior structure of the Moon today, we needed to nail down the thermal state better," said Ananya Mallik, a URI assistant professor of geosciences who joined the University faculty in December 2018. "Now we have the two anchor points - the core-mantle boundary and the surface temperature measured by Apollo - and that will help us create a temperature profile through the Moon. We need that temperature profile to determine the internal state, structure and composition of the Moon."

The surface temperature of the Moon is approximately -20 C.

According to Mallik, the Moon has an iron core, like that of Earth, and previous research using seismic data had found that between 5 and 30 percent of the material at the boundary of the core and mantle was in a liquid or molten state.

"The big question is, why would we have some melt present in the Moon at that depth," Mallik said.

To begin to answer this question, Mallik conducted a series of experiments in 2016 at the Bavarian Research Institute of Experimental Geochemistry and Geophysics in Germany using a multi-anvil device that can exert the high pressures found deep inside the Moon. She prepared a tiny sample of material similar to that found on the Moon, squeezed it in the device at 45,000 times the Earth's atmospheric pressure, which is the pressure believed to exist at the Moon's core-mantle boundary, and used a graphite heater to raise the temperature of the sample until it partially melted.

"The goal was to determine what temperature range would produce a 5 to 30 percent melt, which would tell us the temperature range of the core-mantle boundary," she said.

Now that the temperature range at the boundary has been narrowed, scientists can begin to develop a more precise temperature profile of the Moon and proceed to determine a profile of the minerals that make up the mantle from its crust to its core.

"It's important that we know the composition of the Moon to better understand why it has evolved as it has," Mallik said. "The histories of the Earth and Moon have been intertwined since the beginning. In fact, both are the product of a great collision between proto-Earth and an approximately Mars-sized body that occurred over 4.5 billion years ago. So to understand our Earth better, we have to know our nearest neighbor because we all had a common start.

"Earth is complicated," she continued. "Any similarity in the composition between Earth and the Moon can give us insight into how these two planetary bodies were formed, what were the energetics of the collision, and how elements were partitioned between them."

The URI geoscientist noted that Earth has evolved through the process of plate tectonics, which is responsible for the distribution of the continents, the topography of Earth's surface, the regulation of long-term climate, and perhaps even the origin of life. But there is no evidence of plate tectonics on the Moon.

"Everything on Earth happens because of plate tectonics," she said. "What does this tell us about our own planet when the Moon doesn't experience this process? It's the same argument for why we study Mars and Venus. They are our next closest neighbors, and we all had a common start, but why are they so different from our planet?"

The next steps in Mallik's research will involve experimentally determining the density of the molten material at the core-mantle boundary, which will further refine the temperature range. In collaboration with Heidi Fuqua Haviland at NASA's Marshall Space Flight Center and Paul Bremner at the University of Florida, she will then combine these results with computational methods to derive the temperature profile and composition of the interior of the Moon.
-end-
Mallik's research was published April 1 in the journal Geochimica et Cosmochimica Acta. Co-authors are Tariq Ejaz, a graduate student at the National Center for Antarctic and Ocean Research in India; Svyatoslav Shcheka, a postdoctoral researcher at the Bavarian Research Institute of Experimental Geochemistry and Geophysics in Germany; and Gordana Garapic, assistant professor at the State University of New York at New Paltz.

University of Rhode Island

Related Plate Tectonics Articles:

What drives plate tectonics?
Scientists found ''switches'' between continental rupture, continental collision, and oceanic subduction initiation in the Tethyan evolution after a reappraisal of geological records from the surface and new global-scale geophysical images at depth.
A rocky relationship: A history of Earth's continents breaking up and getting back together
A new study of rocks that formed billions of years ago lends fresh insight into how Earth's plate tectonics, or the movement of large pieces of Earth's outer shell, evolved over the planet's 4.56-billion-year history.
Plate tectonics may have driven 'Cambrian Explosion, study shows
The quest to discover what drove one of the most important evolutionary events in the history of life on Earth has taken a new, fascinating twist.
Zipingpu Reservoir reveals climate-tectonics interplay around 2008 Wenchuan earthquake
A new study led by Prof. JIN Zhangdong from the Institute of Earth Environment (IEE) of the Chinese Academy of Sciences provided a new insight on the interplay between climate and tectonics from a sediment record in the Zipingpu Reservoir around the 2008 Wenchuan earthquake.
How to keep fish in the sea and on the plate
Temporary bans on fishing can be better than permanent ones as a way of allowing fish stocks in an area to recover, while still providing enough to eat, a research team has found.
More Plate Tectonics News and Plate Tectonics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...