Nav: Home

How the brain finds meaning in metaphor

April 01, 2019

You can grasp a hand. You can also grasp a concept.

One is literal. One is metaphorical. Our brains know the difference, but would we be able to understand the latter without the former?

Previous studies have suggested that our understanding of metaphors may be rooted in our bodily experience. Some functional MRI, o fMRI, brain imaging studies have indicated, for example, that when you hear a metaphor such as "she had a rough day," regions of the brain associated with tactile experience are activated. If you hear, "he's so sweet," areas associated with taste are activated. And when you hear action verbs used in a metaphorical context, like "grasp a concept," regions involved in motor perception and planning are activated.

A study by University of Arizona researcher Vicky Lai, published in the journal Brain Research, builds on this research by looking at when, exactly, different regions of the brain are activated in metaphor comprehension and what that tells us about the way we understand language.

Humans Love Talking in Metaphors

Humans use metaphors all the time; they're so ingrained in our language we often don't even notice we're doing it.

In fact, researchers have found that on average, people use a metaphor every 20 words, said Lai, an assistant professor of psychology and cognitive science at the UA. As director of the Cognitive Neuroscience of Language Laboratory in the UA Department of Psychology, Lai is interested in how the brain processes metaphors and other types of language.

Her latest study used EEG, or brainwave studies, to record electrical patterns in the brain when participants were presented with metaphors that contained action content, like "grasp the idea" or "bend the rules."

Study participants were shown three different sentences on a computer screen, each presented one word at a time. One sentence described a concrete action, such as, "The bodyguard bent the rod." Another was a metaphor using the same verb: "The church bent the rules." In the third sentence, the verb was replaced with a more abstract word that conveyed the same meaning as the metaphor: "The church altered the rules."

When participants saw the word "bent" used in both the literal and metaphorical context, a similar response was evoked in the brain, with the sensory-motor region being activated almost immediately - within 200 milliseconds - of the verb being presented on the screen. That response differed when "bent" was replaced with "altered."

Lai's work supports previous findings from fMRI studies, which measure brain activity changes related to blood flow; however, the EEG, which measures electrical activity in the brain, provides a clearer picture of just how important the sensory motor regions of the brain may be for metaphor comprehension.

"In an fMRI, it takes time for oxygenation and deoxygenation of blood to reflect change caused by the language that was just uttered," Lai said. "But language comprehension is fast - at the rate of four words per second."

Therefore, with an fMRI, it's hard to tell whether the sensory motor region is truly necessary for understanding action-based metaphors or if it's something that's activated after comprehension has already taken place. The EEG provides a much more precise sense of timing.

"By using the brainwave measure, we tease apart the time course of what happens first," Lai said.

In the study, the near-immediate activation of the sensory motor region after the verb was displayed suggests that that region of the brain is indeed quite important in comprehension.

Exploring the Power of Language

Lai's current research extends understanding of how humans comprehend language and will help foundationally with some of the other questions her lab is exploring, such as: Can metaphoric language be used to improve people's moods? What role might language play in healthy aging? And, can metaphors aid in the learning of abstract concepts? Lai recently presented ongoing research on the use of metaphors to aid in the teaching, learning and retention of science concepts at the annual meeting of the Cognitive Neuroscience Society in San Francisco.

Lai's fascination with metaphors stems from an early love of literature, which evolved into an interest in linguistics. As a linguistics master's student in Taiwan, she collected and studied hundreds of Mandarin Chinese metaphors. That eventually led her to psychology and her work at the UA.

"Understanding how the brain approaches the complexity of language allows us to begin to test how complex language impacts other aspects of cognition," she said.
-end-


University of Arizona

Related Language Articles:

Why the language-ready brain is so complex
In a review article published in Science, Peter Hagoort, professor of Cognitive Neuroscience at Radboud University and director of the Max Planck Institute for Psycholinguistics, argues for a new model of language, involving the interaction of multiple brain networks.
Do as i say: Translating language into movement
Researchers at Carnegie Mellon University have developed a computer model that can translate text describing physical movements directly into simple computer-generated animations, a first step toward someday generating movies directly from scripts.
Learning language
When it comes to learning a language, the left side of the brain has traditionally been considered the hub of language processing.
Learning a second alphabet for a first language
A part of the brain that maps letters to sounds can acquire a second, visually distinct alphabet for the same language, according to a study of English speakers published in eNeuro.
Sign language reveals the hidden logical structure, and limitations, of spoken language
Sign languages can help reveal hidden aspects of the logical structure of spoken language, but they also highlight its limitations because speech lacks the rich iconic resources that sign language uses on top of its sophisticated grammar.
More Language News and Language Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...