New discovery: Evidence for a 90-million-year-old rainforest near the South Pole

April 01, 2020

Researchers have found unexpected fossil traces of a temperate rainforest near the South Pole 90 million years ago, suggesting the continent had an exceptionally warm climate in prehistoric times.

A team from the UK and Germany, which includes experts from Northumbria University's Department of Geography and Environmental Sciences, discovered a forest soil from the Cretaceous period in the seabed near the South Pole.

Their analysis of the pristinely preserved roots, pollen and spores show that the world at that time was a lot warmer than previously thought, with rainforests in Antarctica similar to the forests we have in New Zealand today.

The international team's findings are published today (1 April) as the lead story in the scientific journal Nature.

The mid-Cretaceous period is considered the age of the dinosaurs and was the warmest period in the past 140 million years. Sea levels were 170 metres higher than today and sea surface temperatures in the tropics are believed to have been as high as 35 degrees Celsius. Until now, little was known about the environmental conditions south of the Polar Circle.

The evidence of Antarctica's rainforest comes from a core of sediment taken from the seabed near West Antarctica's Pine Island Glacier in 2017.

"During the initial shipboard assessments, the unusual colouration of the sediment layer quickly caught our attention; it clearly differed from the layers above it," said first author Dr Johann Klages, a geologist at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research in Germany.

The team CT-scanned the sediment core and found a fascinating dense network of roots spreading through the entire soil layer. The 90-million-year-old soil is so well preserved that it contains countless traces of pollen, spores, remnants of flowering plants and the researchers could even make out individual cell structures.

Co-author Professor Ulrich Salzmann, a palaeoecologist at Northumbria University, used the preserved pollen and spores to reconstruct the past vegetation and climate. He describes the process of reconstructing past environments and climates as similar to working on a huge jigsaw puzzle, which revealed an amazingly detailed picture of the past Antarctic landscape.

"It was particular fascinating to see the well-preserved diverse fossil pollen and other plant remains in a sediment deposited some 90 million years ago, near the South Pole," he said.

"The numerous plant remains indicate that the coast of West Antarctica was, back then, a dense temperate, swampy forest, similar to the forests found in New Zealand today."

When they pieced together their analyses, the international research team found evidence for a mild climate around 500 miles from the South Pole, with annual mean air temperatures of about 12 degrees Celsius. This is roughly the mean temperature of Hobart, Australia, today. Summer temperatures averaged 19 degrees Celsius and water temperatures in rivers and swamps reached up to 20 degrees. This was despite a four-month polar night, meaning for a third of every year there was no life-giving sunlight at all. They also found that the amount and intensity of rainfall in West Antarctica was similar to that in Wales today.

Such climate conditions could only be achieved with a dense vegetation cover on the Antarctic continent and the absence of any major ice-sheets in the South Pole region. Carbon dioxide concentration in the atmosphere was also far higher than previously assumed.

Co-author, climate modeller Professor Gerrit Lohmann, from Germany's Alfred Wegener Institute said: "Before our study, the general assumption was that the global carbon dioxide concentration in the Cretaceous was roughly 1000 ppm. But in our model-based experiments, it took concentration levels of 1120 to 1680 ppm to reach the average temperatures back then in the Antarctic."

As such, the study shows both the enormous potency of the greenhouse gas carbon dioxide, and how essential the cooling effects of today's ice sheets are.

Scientists are now working to understand what caused the climate to cool so dramatically, to form the ice sheets we see today.
-end-
Professor Salzmann is a member of Northumbria's Cold and Palaeo Environment Group (CAPE), which specialises in researching past climates and environments. He worked with a team from the Alfred Wegener Institute; the University of Bremen; British Antarctic Survey and others on the study.

Temperate rainforests near the South Pole during peak Cretaceous warmth is Nature.

Northumbria University

Related Ice Sheets Articles from Brightsurf:

Ice-binding molecules stop ice growth, act as natural antifreeze
Certain molecules bind tightly to the surface of ice, creating a curved interface that can halt further ice growth.

Stem cell sheets harvested in just two days
POSTECH and Pohang Semyung Christianity Hospital joint research team develops a thermoresponsive nanotopography cell culture platform.

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Island-building in Southeast Asia created Earth's northern ice sheets
Tectonic processes are thought to have triggered past ice ages, but how?

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

What happens between the sheets?
Adding calcium to graphene creates an extremely-promising superconductor, but where does the calcium go?

Sea level rise from ice sheets track worst-case climate change scenario
Ice sheets in Greenland and Antarctica whose melting rates are rapidly increasing have raised the global sea level by 1.8cm since the 1990s, and are matching the Intergovernmental Panel on Climate Change's worst-case climate warming scenarios.

Early Mars was covered in ice sheets, not flowing rivers
A large number of the valley networks scarring Mars's surface were carved by water melting beneath glacial ice, not by free-flowing rivers as previously thought, according to new UBC research published today in Nature Geoscience.

Antarctic ice sheets capable of retreating up to 50 meters per day
The ice shelves surrounding the Antarctic coastline retreated at speeds of up to 50 meters per day at the end of the last Ice Age, far more rapid than the satellite-derived retreat rates observed today, new research has found.

First results from NASA's ICESat-2 mission map 16 years of melting ice sheets
By comparing new measurements from NASA's ICESat-2 mission with the original ICESat mission, which operated from 2003 to 2009, scientists were able to measure precisely how the Greenland and Antarctic ice sheets have changed over 16 years.

Read More: Ice Sheets News and Ice Sheets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.