Symposium to explore role nanoparticles may play in disease

April 02, 2008

BETHESDA, Md. (April 2, 2008) - Two Mayo Clinic researchers who study the role nanoparticles may play in hardening of the arteries and in the formation of kidney stones, will lead a symposium on how these super-small particles may affect the body's physiology. The symposium will take place April 8 at the Experimental Biology conference in San Diego.

Nanoparticles are a thousand times smaller than the bacteria, E. coli, but recent advances in microscopy have allowed researchers to watch them interact with cells in the body, said Virginia M. Miller and John C. Lieske of the Mayo Clinic College of Medicine. They will lead the symposium, "Using nanotechnology to answer physiological questions."

One of the questions physiologists want to explore is whether nanoparticles can cause diseases such as atherosclerosis, kidney stones, gall stones and periodontal disease. Dr. Lieske is investigating how nano-sized crystals in the kidney can lead to the development of kidney stones. Dr. Miller has been studying the link between atherosclerosis (hardening of the arteries) and nanoparticles which calcify within the arteries.

A fuller audio interview with the researchers is available at www.lifelines.tv.

New technology: promise and peril?

Nanotechnology presents intriguing possibilities and some troubling unknowns. The technology is already applied in commercial products as disparate as flame resistant materials and cosmetics. In addition, the technology holds promise in the development of medications that can target precise areas of the body, such as a tumor.

Because of their size, nanoparticles may more easily gain entry to the body, where the longterm effects are unknown. Dr. Miller has found that some nanoparticles cause inflammation when injected into the blood vessels of animals, an early step in the development of atherosclerosis.

Using the latest in microscopy, Dr. Miller has begun to observe nanoparticles from atherosclerotic tissue. She hopes to determine how these particles gain access to cells and whether the interaction eventually leads to cell activation or death leading to calcification.

Kidneys stones start as tiny calcifications which later become larger and eventually develop into kidney stones. Dr. Lieske hypothesizes that the nanoparticle causes the initial calcification. Once that happens, other processes can take place that results in a kidney stone.

It is not yet known where nanoparticles that are implicated in kidney stones and atherosclerosis originate - whether our bodies contain them naturally or we obtain them from the environment.

Miller said research should proceed to determine if nanoparticles are safe over the long term. "We may not know some of the consequences until further down the road" she said.

Dr. Miller and Dr. Lieske will moderate a program on nanotechnology at Experimental Biology. The speakers are Vitaly Vodyanoy of the University of Auburn; Robert Lee of The Ohio State University; Kevin D. Gillis of the University of Missouri-Columbia and Farooq Shiekh of the Mayo Clinic College of Medicine will present at the symposium.
-end-
Editor's Notes: To arrange an interview with Dr. Lieske or Dr. Miller, please contact Christine Guilfoy at cguilfoy@the-aps.org or (301) 634-7253. A portion of the interview with these researchers can be found on Life Lines, the podcast of The American Physiological Society. You can find it at www.lifelines.tv.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society ( www.the-aps.org) has been an integral part of this scientific discovery process since it was established in 1887.

American Physiological Society

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.