Nav: Home

A beach lover's dream: A step toward long-lasting sunscreen

April 02, 2017

SAN FRANCISCO, April 2, 2017 -- In a perfect world, people would diligently reapply suncreen every couple of hours to protect their delicate skin from damaging solar radiation. But in reality, few people actually adhere to reapplication guidelines, and those who do hardly relish the task. To develop longer-lasting sunscreens, researchers are trying to answer a basic question: How do sunblock ingredients work?

The researchers will present their work today at the 253rd National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 14,000 presentations on a wide range of science topics.

"Sunscreens have been around for decades, so you'd think we know all there is to know about them -- but we really don't," Vasilios Stavros, Ph.D., says. "If we better understand how the molecules in sunscreen absorb light, then we can manipulate the molecules to absorb more energy, and we can protect the molecules from degradation. If the molecule doesn't break down, there's no need to reapply."

A typical sunscreen sold at a drug store contains many different ingredients, Stavros explains. "We wanted to break these lotions and creams down like a jigsaw puzzle -- take one of the ingredients and understand it from a molecular point of view without interactions from the other component parts."

The researchers, who are at the University of Warwick (U.K.), started by focusing on sunscreen ingredients called chemical filters, which are molecules that absorb UV light. They have studied about 10 common chemical filters so far. When these molecules absorb energy from the sun, Stavros explains, they enter into an excited electronic state. Other molecules are likely to break under the sun's glare, sometimes releasing dangerous free radicals. But instead of breaking, chemical filters can shimmy and shake themselves back into the more stable ground state, releasing energy as harmless heat. The problem is that these chemical filters can fail, breaking into pieces or getting stuck in the excited state.

To figure out how to prevent chemical filter dysfunction, Stavros' team used lasers to simulate the sun's energy and to monitor the flow of energy through the chemical filters as the molecules traverse from the ground state to the excited state and back again (or not). For example, the researchers found that about 10 percent of the molecules of the sunscreen ingredient oxybenzone get locked in an excited state when the laser is shone on them. "When that chemical filter is in an excited state, its atoms are rotating around certain bonds," Stavros says. "If we can manipulate this rotation by adding different chemical groups, we could help the molecule find its way back to the ground state," he says, noting that they plan to work on this project soon.

In addition, the researchers are beginning to study the filters in a context that is more similar to an actual sunscreen, rather than in isolation. "We are increasing molecular complexity, building the jigsaw puzzle," Stavros says. He adds that analyzing the data has been a challenge, but one that the team is tackling head-on. In the end, the data analyses and chemical manipulations should shed more light on how sunscreens protect against sun damage so researchers can develop longer-lasting concoctions.
-end-
Stavros acknowledges funding from the Engineering and Physical Sciences Research Council, the Royal Society, The Leverhulme Trust and the University of Warwick (all in U.K.).

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title

Better chemical filters for better life

Abstract

Ultraviolet-A and B radiation (UV-A; 315-400 nm, UV-B; 280-315 nm) constitutes only a small fraction of the solar irradiance at the Earth's surface, but its deleterious effects are substantial: DNA damage, with skin cancer incidence statistics for the UK showing ~15,000 new cases of malignant melanoma in just one year (2013). To alleviate such photodamage, off-the-shelf suncreams contain chemical filter molecules that absorb the UV radiation and dissipate it as heat. Despite the importance of these chemical filter molecules in photoprotection, the underlying mechanisms that convert UV-A/UV-B to heat are poorly understood.

The talk will discuss our 'bottom-up' approach to advancing our understanding of chemical filter molecules and their photoprotective properties, by studying how chemical filter molecules found in commercial suncreams respond to UV in the different environments of the gas- and solution-phase. By pooling information gathered from each environment, the talk will demonstrate the rich information one obtains pertaining to the intrinsic properties of these chemical filters. Importantly, the talk will also highlight how insight into photoprotection mechanisms at the molecular level has the potential to make a considerable societal contribution, not least in designing next generation, physically and environmentally benign, sunscreen products with enhanced long-term stability.

American Chemical Society

Related Molecules Articles:

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.
Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.