Nav: Home

The carpenter enzyme gives DNA the snip

April 02, 2017

Microscopes that reveal the hidden complexities of life down to the nanoscale level have shown in exquisite detail how an enzyme involved in DNA repair works its molecular magic.

This enzyme -- known as Flap endonuclease 1, or FEN1 -- is often highly overexpressed or faulty in cancer and other types of diseases. Now that researchers know how it operates, they plan to use the information to design an inhibitor against it, said Samir Hamdan, KAUST Associate Professor of Bioscience, who led the study into FEN11.

As its name suggests, FEN1 removes overhanging "flaps" of single-stranded DNA that dangle off the edge of the double helix during repair or replication of the genome. Scientists have advanced a number of theories for how FEN1 operates, but it's been unclear how exactly the enzyme recognizes damage in the genome and how then it removes the fault.

To get a closer look, Hamdan and his colleagues turned to a sophisticated microscopy technique known as single-molecule fluorescence resonance energy transfer, or smFRET. This method repeatedly images the same area, each time turning on and off different glowing probes that tag different molecules. Superimposing these images together yields a nanoscale-quality molecular movie with a millisecond to sub-millisecond temporal resolution.

In this way, the team -- which included first author Fahad Rashid and several other KAUST graduate students -- showed that FEN1 first binds to DNA weakly if damage is detected. Only then, if it's the kind of damage that FEN1 can fix, does the enzyme lock on and get to work.

"With this two-step verification mechanism," Hamdan said, "FEN1 follows the old carpenter rule 'measure twice and cut once.'"

Given how critical FEN1 is for replication and repair, Hamdan said it's no surprise that FEN1 is highly overexpressed in several types of cancer or that functional mutations associated with the enzyme are linked to cancer and various diseases. Finding a drug that blocks FEN1's function could thus provide a highly effective anticancer strategy, and the KAUST study could help this quest in two ways.

"The first is that by understanding the molecular mechanisms of how FEN1 works, we will understand better how defects in FEN1 cause human diseases and result in genomic instability," Hamdan says.

"The second is that our work defined critical intermediary steps along the path of substrate recognition that are specific to FEN1, which would provide a new direction to target FEN1 specifically."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...