Nav: Home

The carpenter enzyme gives DNA the snip

April 02, 2017

Microscopes that reveal the hidden complexities of life down to the nanoscale level have shown in exquisite detail how an enzyme involved in DNA repair works its molecular magic.

This enzyme -- known as Flap endonuclease 1, or FEN1 -- is often highly overexpressed or faulty in cancer and other types of diseases. Now that researchers know how it operates, they plan to use the information to design an inhibitor against it, said Samir Hamdan, KAUST Associate Professor of Bioscience, who led the study into FEN11.

As its name suggests, FEN1 removes overhanging "flaps" of single-stranded DNA that dangle off the edge of the double helix during repair or replication of the genome. Scientists have advanced a number of theories for how FEN1 operates, but it's been unclear how exactly the enzyme recognizes damage in the genome and how then it removes the fault.

To get a closer look, Hamdan and his colleagues turned to a sophisticated microscopy technique known as single-molecule fluorescence resonance energy transfer, or smFRET. This method repeatedly images the same area, each time turning on and off different glowing probes that tag different molecules. Superimposing these images together yields a nanoscale-quality molecular movie with a millisecond to sub-millisecond temporal resolution.

In this way, the team -- which included first author Fahad Rashid and several other KAUST graduate students -- showed that FEN1 first binds to DNA weakly if damage is detected. Only then, if it's the kind of damage that FEN1 can fix, does the enzyme lock on and get to work.

"With this two-step verification mechanism," Hamdan said, "FEN1 follows the old carpenter rule 'measure twice and cut once.'"

Given how critical FEN1 is for replication and repair, Hamdan said it's no surprise that FEN1 is highly overexpressed in several types of cancer or that functional mutations associated with the enzyme are linked to cancer and various diseases. Finding a drug that blocks FEN1's function could thus provide a highly effective anticancer strategy, and the KAUST study could help this quest in two ways.

"The first is that by understanding the molecular mechanisms of how FEN1 works, we will understand better how defects in FEN1 cause human diseases and result in genomic instability," Hamdan says.

"The second is that our work defined critical intermediary steps along the path of substrate recognition that are specific to FEN1, which would provide a new direction to target FEN1 specifically."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.