Nav: Home

Biological ballet: Imaging technique reveals complex protein movements in cell membrane

April 02, 2018

What do ballet and cell biology have in common? Perhaps more than you might think.

Every cell in your body is enclosed by a cell membrane, a lipid bilayer that separates the cell's contents from its surroundings. Residing within the cell membrane itself, molecules move around like ballet dancers on a stage.

In the words of Professor Akihiro Kusumi, leader of the Membrane Cooperativity Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), "The proteins in the cell membrane undergo elegantly coordinated dances to relay messages between the cell and its environment."

In order to understand how these proteins move within the membrane and how they interact with each other, Prof. Kusumi and other researchers developed an imaging method for live cells called live-cell single fluorescent-molecule imaging (SFMI). In SFMI, each protein 'dancer' in the membrane is individually tagged with fluorescent markers to make them visible under special home-built fluorescence microscopes.

However, SFMI can be problematic: -- over time under the microscope, fluorescent markers lose their glow - a process known as 'photobleaching'. Because of this, until now, cell biologists have been unable to observe individual molecules for longer than about ten seconds at a time. "It was like randomly taking many 10-second long clips, and trying to connect them in the correct order to produce a movie lasting for 5 minutes," says Mr Taka-aki Tsunoyama, a researcher from the Membrane Cooperativity Unit at OIST.

In a paper recently published in Nature Chemical Biology, Tsunoyama, Kusumi, and their colleagues reported that they have come up with a twist on SFMI that suppresses photobleaching. Their method involves including a unique combination of chemicals and molecular oxygen in the specimen.

Previous methods used to prevent photobleaching were not very effective, and in addition, they were usually toxic to living cells, like totally removing molecular oxygen. However, the OIST researchers placed the cells in an environment with low oxygen concentrations, which mimics the real conditions inside a living organism, and added two mild chemicals called 'trolox' and 'trolox quinone'. This combination was amazingly effective at reducing photobleaching without influencing the viability of the cells.

This new approach allows the researchers to observe individual molecules in living cells for up to 400 seconds. "Our method improves the observation time of fluorescent molecules by forty-fold," says Prof. Kusumi.

With the increased time window of observation, the researchers were able to study how molecules work in the cell far more directly and clearly. They studied specific regions of the membrane known as focal adhesions. "These are effectively the feet of the cell," says Prof. Kusumi. The cell uses these 'feet' to get around, for instance, when cancer cells metastasize.

The researchers studied a group of proteins within the focal adhesion called integrins, which link the internal skeleton of the cell to the extracellular matrix. Previously, it was assumed that integrins are solidly fixed within the cellular feet. However, the extended observation time allowed the researchers to clearly see that integrin molecules repeatedly move and stop within the cellular feet, and even migrate between feet.

Like a rock climber searching for a new hold, an integrin molecule moves around to find a possible new attachment point. Upon finding one, it temporarily binds to it to determine whether the new hold is stable. Once it is deemed stable, the integrin grabs on tightly and pulls the cell forward.

Using their new technique, the researchers can record videos of entire acts of protein dances in the cell membrane, without interruption. "With our method, we can now follow the movement of each individual molecular dancer for sufficiently long periods of time to understand the cellular context" says Prof. Kusumi. Shedding light on the behavior of focal adhesion proteins could help researchers one day develop drugs that stop cancer cells from migrating through the body, he says.
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Proteins Articles:

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.