Breakthrough in determining ages of different microbial groups

April 02, 2018

An international team of scientists, which includes the University of Bristol, have made a significant breakthrough in how we understand the first three-quarters of life on earth by creating new techniques for investigating the timing and co-evolution of microbial groups.

To learn about the past, paleontologists turn to the fossil record. The occurrence, abundance and diversity of fossils provides a window into the evolutionary history of animal and plant groups, anchoring them in absolute geological time.

But the fossil record is almost no good at all for microbial, single-celled life. Microbes rarely fossilise and, with a few notable exceptions, the available fossils are too indistinct to reveal which groups were already in existence at a particular time.

This is a major problem for students of evolutionary history, because almost all of life's genetic, biochemical and metabolic diversity is microbial - both today and in the distant past.

While most microbes are invisible to the naked eye, their collective action in recycling nutrients, producing the oxygen we need to breathe, and maintaining the stability of global ecosystems is impossible to ignore.

Microbial dominance was, if anything, even higher in the past. The most familiar groups of large, multicellular life forms that exist today, animals, plants and fungi, are relative newcomers in evolutionary terms, evolving within the last half-billion years or so.

The work, published today in the journal, Nature Ecology and Evolution, is the result of an international collaboration including researchers at the CNRS in Lyon, France, Eötvös Loránd University in Budapest, Hungary and the School of Biological Sciences at Bristol.

In it, the researchers develop a new method for working out the relative ages of microbial groups - which lineages evolved first, and which came later?

Instead of using fossil dates, the method works by looking at events of horizontal gene transfer among ancient microbes, which can be detected by studying the genomes of their modern descendants.

Horizontal gene transfer is a process that many microbes use to obtain new genes from other cells living in the same habitat and it underlies the rapid spread of antibiotic resistance, but is also a more general way in which microbes can adapt to new ecological niches.

Dr Tom Williams, one of the study's co-authors, from Bristol, said: "The key to the method is that gene transfer from one lineage to another implies that those two branches of the tree must have existed at roughly the same time: in particular, the recipient of the horizontally transferred gene must be the same age as, or younger than, the donor lineage.

"By systematically scanning modern genomes for ancient gene transfers, we obtained a set of relative age constraints that, in combination, provide a wealth of information about the relative ages of different microbial groups."

The results provide the first time ordering for several microbial groups for which no reliable fossil evidence exists, including the Archaea - one of the two primary lineages of cellular life.
-end-


University of Bristol

Related Microbes Articles from Brightsurf:

A new look at deep-sea microbes
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.

Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.

Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock

What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.

Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.

Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.

Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.

Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.

Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.

Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.

Read More: Microbes News and Microbes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.