Using water molecules to read electrical activity in lipid membranes

April 02, 2018

Every human cell is encased in a five-nanometer-thick lipid membrane that protects it from the surrounding environment. Like a gatekeeper, the membrane determines which ions and molecules can pass through. In so doing, it ensures the cell's well-being and stability and allows it to communicate via electrical signals.

Researchers from the Laboratory for fundamental BioPhotonics (LBP) in EPFL's School of Engineering were able to track these moving charges in real time in a completely non-invasive manner. Rather than observing the membranes themselves, they looked at the surrounding water molecules, which, in addition to keeping the membrane intact, change orientation in the presence of electrical charges. So by 'reading' their position, the researchers were able to create a dynamic map of how charges are transported across a membrane.

The researchers' method has just been published in the journal Proceedings of the National Academy of Sciences (PNAS). It could shed light on how ion channels function, along with other processes at work in membranes. This clinically viable method could potentially also be used to directly track ion activity in neurons, which would deepen researchers' knowledge of how nerve cells work. "Water molecules can be found wherever there are lipid membranes, which need these molecules to exist," says Sylvie Roke, head of the LBP. "But until now, most studies on membranes didn't look at these molecules. We've shown that they contain important information."

The researchers did this by using a unique second-harmonic microscope that was invented at the LBP. The imaging efficiency of this microscope is more than three orders of magnitude greater than that of existing second-harmonic microscopes. With this microscope, the researchers obtained images of water molecules at a time scale of 100 milliseconds.

To probe the lipid membranes' hydration, the researchers combine two lasers of the same frequency (femtosecond pulses) in a process that generates photons with a different frequency: this is known as second-harmonic light. It is generated only at interfaces and reveals information on the orientation of water molecules. "We can observe what's happening in situ, and we don't need to modify the environment or use bulky markers like fluorophores that would disturb water molecules' movement" says Orly Tarun, the publication's lead author.

Unexpected charge fluctuations are observed

With this method, the researchers observed charge fluctuations in membranes. Such fluctuations were previously unknown and hint at much more complex chemical and physical behavior than is currently considered.
-end-
Reference: O. Tarun, C. Hannesschläger, P. Pohl, and S. Roke, A label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales, PNAS

Laboratory of fundamental BioPhotonics (LBP) - Julia Jacobi Chair of Photomedicine

Ecole Polytechnique Fédérale de Lausanne

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.