Researchers develop injectable bandage

April 02, 2018

A penetrating injury from shrapnel is a serious obstacle in overcoming battlefield wounds that can ultimately lead to death.Given the high mortality rates due to hemorrhaging, there is an unmet need to quickly self-administer materials that prevent fatality due to excessive blood loss.

With a gelling agent commonly used in preparing pastries, researchers from the Inspired Nanomaterials and Tissue Engineering Laboratory have successfully fabricated an injectable bandage to stop bleeding and promote wound healing.

In a recent article "Nanoengineered Injectable Hydrogels for Wound Healing Application" published in Acta Biomaterialia, Dr. Akhilesh K. Gaharwar, assistant professor in the Department of Biomedical Engineering at Texas A&M University, uses kappa-carrageenan and nanosilicates to form injectable hydrogels to promote hemostasis (the process to stop bleeding) and facilitate wound healing via a controlled release of therapeutics.

"Injectable hydrogels are promising materials for achieving hemostasis in case of internal injuries and bleeding, as these biomaterials can be introduced into a wound site using minimally invasive approaches," said Gaharwar. "An ideal injectable bandage should solidify after injection in the wound area and promote a natural clotting cascade. In addition, the injectable bandage should initiate wound healing response after achieving hemostasis."

The study uses a commonly used thickening agent known as kappa-carrageenan, obtained from seaweed, to design injectable hydrogels. Hydrogels are a 3-D water swollen polymer network, similar to Jell-O, simulating the structure of human tissues.

When kappa-carrageenan is mixed with clay-based nanoparticles, injectable gelatin is obtained. The charged characteristics of clay-based nanoparticles provide hemostatic ability to the hydrogels. Specifically, plasma protein and platelets form blood adsorption on the gel surface and trigger a blood clotting cascade.

"Interestingly, we also found that these injectable bandages can show a prolonged release of therapeutics that can be used to heal the wound" said Giriraj Lokhande, a graduate student in Gaharwar's lab and first author of the paper. "The negative surface charge of nanoparticles enabled electrostatic interactions with therapeutics thus resulting in the slow release of therapeutics."
-end-
This research is funded by the National Science Foundation's Chemical, Bioengineering, Environmental and Transport Systems Division, and the National Institutes of Health's National Institute of Biomedical Imaging and Bioengineering.

Texas A&M University

Related Hydrogels Articles from Brightsurf:

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Cartilage-Inspired, Lipid-Based and Super Slippery Synthetic Hydrogels
Drawing inspiration from the mechanisms that lubricate the cartilage in our joints over a lifetime of wear, researchers designed extremely slippery hydrogels with self-renewing, lipid-based boundary layers, which result in a near 100-fold reduction in friction and wear over other hydrogels.

Coaxing single stem cells into specialized cells
Researchers at the University of Illinois Chicago have developed a unique method for precisely controlling the deposition of hydrogel, which is made of water-soluble polymers commonly used to support cells in experiments or for therapeutic purposes.

New hydrogels for T-cell growth to be used in cancer immunotherapy
A team with the participation of researchers from the Spanish National Research Council (CSIC) has designed new hydrogels that allow the culture of T-cells or T-lymphocytes, cells of the immune system that are used in cancer immunotherapy since they have the capacity to destroy tumor cells.

Superfast o-phthalaldehyde/N-nucleophile cross-linking strategy for biomedical hydrogels
Recently, Prof. Xuesi Chen and colleagues at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, proposed a new crosslinking strategy based on the condensation reaction between o-phthalaldehyde (OPA) and N-nucleophiles for hydrogel formation.

FEFU scientists propose to restore neural tissue with hydrogels based on modified pectins
Far Eastern Federal University (FEFU) scientists have developed implantable hydrogels based on plant polysaccharides (pectins).

Researchers develop cell injection technique that could help reverse vision loss
University of Toronto Engineering researchers have developed a new method of injecting healthy cells into damaged eyes.

Hydrogel paves way for biomedical breakthrough
Dubbed the ''invisibility cloak'', engineers at the University of Sydney have developed a hydrogel that allows implants and transplants to better and more safetly interact with surrounding tissue.

Hydrogel mimics human brain with memorizing and forgetting ability
Hokkaido University researchers have found a soft and wet material that can memorize, retrieve, and forget information, much like the human brain.

Diabetic mice improve with retrievable millimeter-thick cell-laden hydrogel fiber
Researchers from The University of Tokyo developed a novel fiber-shaped hydrogel transplant for the treatment of type 1 diabetes mellitus.

Read More: Hydrogels News and Hydrogels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.