Spear points prove early inhabitants liked to travel

April 02, 2018

Careful examination of numerous fluted spear points found in Alaska and western Canada prove that the Ice Age peopling of the Americas was much more complex than previously believed, according to a study done by two Texas A&M University researchers.

Heather Smith and Ted Goebel both were involved with the study that was associated with the Center for the Study of the First Americans, part of the Department of Anthropology at Texas A&M. Smith is now an assistant professor at Eastern New Mexico University.

Their work has been published in the current issue of PNAS (Proceedings of the National Academy of Sciences).

Smith, who worked on the study as part of her Ph.D. at Texas A&M, and Goebel, professor of anthropology at Texas A&M, believe the findings could change how we view the traveling patterns and routes of early humans from 14,000 to 12,000 years ago as they settled in numerous parts of North America.

Using new digital methods of analyses utilized for the first time in such a study of these artifacts, the researchers found that early settlers in the emerging ice-free corridor of interior western Canada "were travelling north to Alaska, not south from Alaska, as previously interpreted," says Goebel.

"Although during the late Ice Age there were two possible routes for the first Americans to follow on their migration from the Bering Land Bridge area southward to temperate North America, it now looks like only the Pacific coastal route was used, while the interior Canadian route may not have been fully explored until millennia later, and when it was, primarily from the south.

"The findings of these fluted spear points provide archaeological evidence supporting new genetic models explaining how humans colonized the New World."

Traditional interpretations of the peopling of the Americas have predicted that early inhabitants migrated from Siberia through Alaska, and then followed the ice-free corridor that gradually opened in western Canada to reach the Great Plains of the western U.S. But newer genetic studies of ancient Siberians, Alaskans, and Americans, as well as the discovery of new sites south of the Canadian ice sheets predating the opening of the ice-free corridor, suggest instead that the first Americans passed along the Pacific coast.

"The key is that the projectile points are related in their technology and morphology, and the way in which some of these characteristics vary forms the pattern of an ancestral-descendent relationship. This suggests that the people who carried the artifacts to these locations were related as well." adds Smith.

"It shows that these early people in western Canada and Alaska were descendent of Clovis (the first settlers of North America) and they used the same type of weapons to hunt for food, especially bison. These makers of fluted points were not just all over mid-continent North America but were also migrating northward back to the Arctic."

These artifacts can be used to document migration patterns of prehistoric peoples, she says.

"The spear points prove that the peopling of the Americas was much more complex than we had believed and that these early settlers went in a lot of different directions, not just south. We now have a better picture of what weapons they used to hunt and where their travels took them."

"This is tangible evidence of a connection between people in the Arctic and the Mid-continent 12,000 years ago, a connection which may be either genetic or social, but ultimately, speaks volumes of the capability and adaptability of early cultures in North America," she notes.
-end-


Texas A&M University

Related Ice Articles from Brightsurf:

Ice-binding molecules stop ice growth, act as natural antifreeze
Certain molecules bind tightly to the surface of ice, creating a curved interface that can halt further ice growth.

Ice loss due to warming leads to warming due to ice loss: a vicious circle
The loss of huge ice masses can contribute to the warming that is causing this loss and further risks.

Ice loss likely to continue in Antarctica
A new international study led by Monash University climate scientists has revealed that ice loss in Antarctica persisted for many centuries after it was initiated and is expected to continue.

Ice discharge in the North Pacific set off series of climate events during last ice age
Repeated catastrophic ice discharges from western North America into the North Pacific contributed to, and perhaps triggered, hemispheric-scale changes in the Earth's climate during the last ice age.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

Antarctica: cracks in the ice
In recent years, the Pine Island Glacier and the Thwaites Glacier on West-Antarctica have been undergoing rapid changes, with potentially major consequences for rising sea levels.

The magnetic history of ice
The history of our planet has been written, among other things, in the periodic reversal of its magnetic poles.

Order out of disorder in ice
We revealed a multiple-step transformation mechanism using state-of-the-art time-resolved in-situ synchrotron x-ray diffraction.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

What causes an ice age to end?
Research by an international team helps to resolve some of the mystery of why ice ages end by establishing when they end.

Read More: Ice News and Ice Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.