Nav: Home

The Transpolar Drift is faltering -- sea ice is now melting before it can leave the nursery

April 02, 2019

The dramatic loss of ice in the Arctic is influencing sea-ice transport across the Arctic Ocean. As experts from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research report in a new study, today only 20 percent of the sea ice that forms in the shallow Russian marginal seas of the Arctic Ocean actually reaches the Central Arctic, where it joins the Transpolar Drift; the remaining 80 percent of the young ice melts before it has a chance to leave its 'nursery'. Before 2000, that number was only 50 percent. According to the researchers, this development not only takes us one step closer to an ice-free summer in the Arctic; as the sea ice dwindles, the Arctic Ocean stands to lose an important means of transporting nutrients, algae and sediments. The new study will be released as a freely accessible Open Access article in the online journal Scientific Reports on 2 April 2019.

The shallow Russian shelf or marginal seas of the Arctic Ocean are broadly considered to be the 'nursery' of Arctic sea ice: in winter, the Barents Sea, Kara Sea, Laptev Sea and East Siberian Sea constantly produce new sea ice. This is due to extremely low air temperatures down to minus 40 degrees Celsius, and a strong offshore wind that drives the young ice out to the open sea. In the course of the winter, the sea ice is eventually caught up in the Transpolar Drift, one of the two main currents in the Arctic Ocean. In two to three years' time, it transports the ice floes from the Siberian part of the Arctic Ocean, across the Central Arctic, and into the Fram Strait, where it finally melts. Two decades ago, roughly half the ice from Russia's shelf seas made this transarctic journey. Today only 20 percent does; the other 80 percent of the young ice melts before it can become a year old and reach the Central Arctic.

Experts from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) came to this troubling conclusion after monitoring and analysing the sea ice's movements with the aid of satellite data from 1998 to 2017. "Our study shows extreme changes in the Arctic: the melting of sea ice in the Kara Sea, Laptev Sea and East Siberian Sea is now so rapid and widespread that we're seeing a lasting reduction in the amount of new ice for the Transpolar Drift. Now, most of the ice that still reaches the Fram Strait isn't formed in the marginal seas, but comes from the Central Arctic. What we're witnessing is a major transport current faltering, which is bringing the world one major step closer to a sea-ice-free summer in the Arctic," says first author Dr Thomas Krumpen, a sea-ice physicist at the Alfred Wegener Institute.

This trend has been confirmed by the outcomes of sea-ice thickness measurements taken in the Fram Strait, which the AWI sea-ice physicists gather on a regular basis. "The ice now leaving the Arctic through the Fram Strait is, on average, 30 percent thinner than it was 15 years ago. The reasons: on the one hand, rising winter temperatures in the Arctic and a melting season that now begins much earlier; on the other, this ice is no longer formed in the shelf seas, but much farther north. As a result, it has far less time to drift through the Arctic and grow into thicker pack ice," Thomas Krumpen explains.

Those ice floes that the Transpolar Drift still carries to the Fram Strait are for the most part formed in the open sea, i.e., in regions of the Arctic Oceans far from the coasts. Consequently, compared to ice from the shelf seas, they contain significantly fewer particles like algae, sediments and nutrients - because waves, wind and tides stir up far more particles from the seafloor in shallow coastal zones than on the high seas. In addition, rivers like the Lena and the Yenisei carry major quantities of minerals and sediments to coastal areas; when the water freezes, they become trapped in the ice.

Whereas in the past, sea ice from the shelf seas transported this mineral load to the Fram Strait, today the melting floes release it on their way to the Central Arctic; what reaches the Fram Strait is less material, and with a different composition. This finding is a result e.g. of analysis of samples obtained by means of sediment traps that AWI biologists have been conducting in the Fram Strait for about two decades. "Instead of Siberian minerals, we're now finding more remains of dead algae and microorganisms in our sediment traps," says co-author Eva-Maria Nöthig. In the long term, this altered sea-ice-based particle transport is likely to produce lasting changes in the biogeochemical cycles and ecological processes of the central Arctic Ocean.

The evolution of sea ice and the ecological processes in the Arctic Ocean are also key research questions that will be addressed during the MOSAiC expedition, which will begin this September. The German research icebreaker Polarstern will journey to the Arctic and drift with the Transpolar Drift through the Arctic Ocean for an entire year, intentionally trapped in the ice. 600 people from 17 countries will take part in the expedition, which will be regularly resupplied by aircraft and other icebreakers; moreover, many times that number of experts will use the resulting data to take climate and ecosystem research to a new level. MOSAiC, the greatest Arctic research expedition in history, will be spearheaded by the Alfred Wegener Institute.
-end-
Original Publication: Thomas Krumpen, H. Jakob Belter, Antje Boetius, Ellen Damm, Christian Haas, Stefan Hendricks, Marcel Nicolaus, Eva-Maria Nöthig, Stephan Paul, Ilka Peeken, Robert Ricker, Rüdiger Stein: Arctic warming interrupts the Transpolar Drift and affects longrange transport of sea ice and ice-rafted matter, Scientific Reports, DOI: 10.1038/s41598-019-41456-y

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

Related Sea Ice Articles:

Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.
Arctic sea ice can't 'bounce back'
Arctic sea ice cannot 'quickly bounce back' if climate change causes it to melt, new research suggests.
Cracks in Arctic sea ice turn low clouds on and off
The prevailing view has been that more leads are associated with more low-level clouds during winter.
Evidence: Antarctica's thinning ice shelves causing more ice to move from land into sea
New study provides the first evidence that thinning ice shelves around Antarctica are causing more ice to move from the land into the sea.
Low sea-ice cover in the Arctic
The sea-ice extent in the Arctic is nearing its annual minimum at the end of the melt season in September.
Study shows algae thrive under Greenland sea ice
Microscopic marine plants flourish beneath the ice that covers the Greenland Sea, according to a new study in the Journal of Geophysical Research: Oceans.
ICESat-2 reveals profile of ice sheets, sea ice, forests
With each pass of the ICESat-2 satellite, the mission is adding to datasets tracking Earth's rapidly changing ice.
Arctic cyclone limits the time-scale of precise sea-ice prediction in Northern Sea Route?
Climate change has accelerated sea-ice retreat in the Arctic Ocean, leading to new opportunities for summer commercial maritime navigation along the Northern Sea Route.
Ocean waves following sea ice loss trigger Antarctic ice shelf collapse
Storm-driven ocean swells have triggered the catastrophic disintegration of Antarctic ice shelves in recent decades, according to new research published in Nature today.
New technique more accurately reflects ponds on Arctic sea ice
This one simple mathematical trick can accurately predict the shape and melting effects of ponds on Arctic sea ice, according to new research by UChicago scientists.
More Sea Ice News and Sea Ice Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.