Artificial intelligence enables recognizing and assessing a violinist's bow movements

April 02, 2019

In playing music, gestures are extremely important, in part because they are directly related to the sound and the expressiveness of the musicians. Today, technology exists that captures movement and is capable of detecting gestural details very precisely. In a study published this month of March in Frontiers in Psychology, David Dalmazzo and Rafael Ramírez, members of the Music and Machine Learning Lab of the Music Technology Group (MTG) at the Department of Information and Communication Technologies (DTIC) of UPF, apply artificial intelligence to the automatic classification of violin bow gestures according to the performer's movement.

"We recorded movement and audio data corresponding to seven representative bow techniques (Détaché, Martelé, Spiccato, Ricochet, Sautillé, Staccato and Bariolage) performed by a professional violinist. We obtained information about the inertial motion from the right forearm and we synchronized it with the audio recordings", explain Dalmazzo and Ramírez, authors of the study.

A system identifies violinists' bowing techniques with 94% accuracy

The data used in this study are available in an online public repository. After extracting the characteristics of the information concerning movement and audio, the researchers trained a system to automatically identify the different bow techniques used in playing the violin. The model can determine the different techniques studied to more than 94% accuracy. The results enable applying this work to a practical learning scenario, in which students of violin can benefit from the feedback provided by the system in real time.

This study was conducted within the framework of the TELMI (Technology Enhanced Learning Performance of Musical Instrument) project. Its purpose is to investigate how technology (sensors, multimodal data, artificial intelligence, and computer systems) can improve the practices of students of music, helping them to focus on the precise development of good practices, especially when incorporating new musical skills.

With the violin as a case study, one of the main goals of the project is to provide students with feedback in real time, as well as allowing them to compare their performances with those of leading experts. "Our findings have already been generalized to other musical instruments and applied in music education environments", adds Rafael Ramírez, principal investigator of the project.
-end-


Universitat Pompeu Fabra - Barcelona

Related Artificial Intelligence Articles from Brightsurf:

Physics can assist with key challenges in artificial intelligence
Two challenges in the field of artificial intelligence have been solved by adopting a physical concept introduced a century ago to describe the formation of a magnet during a process of iron bulk cooling.

A survey on artificial intelligence in chest imaging of COVID-19
Announcing a new article publication for BIO Integration journal. In this review article the authors consider the application of artificial intelligence imaging analysis methods for COVID-19 clinical diagnosis.

Using artificial intelligence can improve pregnant women's health
Disorders such as congenital heart birth defects or macrosomia, gestational diabetes and preterm birth can be detected earlier when artificial intelligence is used.

Artificial intelligence (AI)-aided disease prediction
Artificial Intelligence (AI)-aided Disease Prediction https://doi.org/10.15212/bioi-2020-0017 Announcing a new article publication for BIO Integration journal.

Artificial intelligence dives into thousands of WW2 photographs
In a new international cross disciplinary study, researchers from Aarhus University, Denmark and Tampere University, Finland have used artificial intelligence to analyse large amounts of historical photos from WW2.

Applying artificial intelligence to science education
A new review published in the Journal of Research in Science Teaching highlights the potential of machine learning--a subset of artificial intelligence--in science education.

New roles for clinicians in the age of artificial intelligence
New Roles for Clinicians in the Age of Artificial Intelligence https://doi.org/10.15212/bioi-2020-0014 Announcing a new article publication for BIO Integration journal.

Artificial intelligence aids gene activation discovery
Scientists have long known that human genes are activated through instructions delivered by the precise order of our DNA.

Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).

Classifying galaxies with artificial intelligence
Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images.

Read More: Artificial Intelligence News and Artificial Intelligence Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.