Tumor microenvironment analyzed to increase effectiveness of preclinical trials

April 02, 2019

It was shown that co-culturing HeLa adenocarcinoma cells, peripheral blood mononuclear cells, and mesenchymal stromal cells results in changes in the proliferative activity of the peripheral blood mononuclear cells and mesenchymal stromal cell populations.

She will be allocated 600 thousand rubles in funding for her inquiries into oncosuppressors and apoptosis activation.

"Currently, it's very important to find new ways of cancer therapy that could be effective, targeted and not very toxic. Traditional chemotherapy is marked by low specificity, which leads to heavy side effects like damage to normal cells of the spinal cord, lymph, epithelium, or hair follicles. That's why we work on new methods based on gene and cell technologies that can be both effective and safe," says the winner.

Dr. Solovyova adds that oncosuppressors and apoptosis activators selectively destroy cancer cells, and immunomodulators stimulate the organism to fight the tumor. In her latest study, it was shown that co-culturing HeLa adenocarcinoma cells, peripheral blood mononuclear cells, and mesenchymal stromal cells results in changes in the proliferative activity of the peripheral blood mononuclear cells and mesenchymal stromal cell populations.
-end-


Kazan Federal University

Related Spinal Cord Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Improving treatment of spinal cord injuries
A group led by UC Riverside bioengineering professor Victor G.

Spinal cord gives bio-bots walking rhythm
Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.

Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.

An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.

Read More: Spinal Cord News and Spinal Cord Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.