Nav: Home

Turbulences theory closer high-energy physics than previously thought

April 02, 2019

Many scientists have been disappointed that no new elementary particles have been discovered at CERN's Large Hadron Collider since the Higgs Boson in 2012. The failure to detect particles that had previously been predicted by theory is only one example of a 'hole' that has recently appeared in the concept of naturalness in theoretical physics. In simple terms, the concept states that physical parameters should depend roughly equally on all the terms used to calculate them, in terms of proportion. Sauro Succi, a theoretical physicist at the Fondazione Istituto Italiano di Tecnologia in Rome, Italy, has now published an intriguing essay in the journal EPJ D in which he argues that several common natural phenomena do not operate under 'naturalness' at all. Rather, they can only be explained using parameters with widely separated numerical values.

In his paper, Succi applies the concept of 'un-naturalness' to two complex areas of theoretical physics: the turbulence of fluid flows, and strongly correlated systems of the elementary particles known as fermions. Only the first of these two topics relates to his main research field: computer simulations of flowing matter below the macroscale and above the microscopic scale. He describes how these theories have similarities that are also shared with those of 'un-naturalness' in high-energy physics.

Currently, this work is highly theoretical, even abstract, but Succi claims that it can be used in the design of new materials for engineering and biomedical applications. In the long term, simulations based on these principles may permit the computer simulation of complete biological organelles, such as the Golgi apparatus. Succi pays tribute to a CERN colleague who sparked his interest in aspects of naturalness and complexity in theoretical physics far removed from his main research area.

S. Succi (2019), Of Naturalness and Complexity, Eur. Phys. J. Plus 134:97, DOI 10.1140/epjp/i2019-12576-3


Related Turbulence Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
Swirling swarms of bacteria offer insights on turbulence
When bacteria swim at just the right speed, swirling vortices emerge.
Clarifying the mechanism for suppressing turbulence through ion mass
The National Institutes of Natural Sciences National Institute for Fusion Science, in collaborative research with Nagoya University, has clarified through theory and simulation research that turbulence in a plasma confined in the magnetic field is suppressed and the heat and particle losses are reduced in cases with larger ion mass.
Buckle up! Climate change to increase severe aircraft turbulence
Turbulence strong enough to catapult unbuckled passengers and crew around the aircraft cabin could become twice or even three times as common because of climate change, according to a new study from the University of Reading published in Advances in Atmospheric Sciences.
Reading between the lines of highly turbulent plasmas
Plasma, the ionised state of matter found in stars, is still not fully understood.
How plankton cope with turbulence
Microscopic marine plankton are not helplessly adrift in the ocean.
From the butterfly's wing to the tornado: Predicting turbulence
Remember the butterfly-triggers-tornado adage? Chaos theory says calculating turbulence to find out if that's true must be impossible.
How donut-shaped fusion plasmas managed to decrease adverse turbulence
In a paper published in EPJ H, Fritz Wagner from the Max Planck Institute for Plasma Physics in Germany, gives a historical perspective outlining how our gradual understanding of improved confinement regimes for what are referred to as toroidal fusion plasmas -- confined in a donut shape using strong magnetic fields-- has developed since the 1980s.
HSE experts investigate how order emerges from chaos
Igor Kolokolov and Vladimir Lebedev, scientific experts from HSE's Faculty of Physics and the Landau Institute for Theoretical Physics of Russian Academy of Sciences, have developed an analytical theory, which binds the structure of coherent vortices formed due to inverse cascades in 2-D turbulence with the statistical properties of hydrodynamic fluctuations.
A turbulent solution to a growing problem
Plasma turbulence can help prevent small magnetic islands from growing and becoming harmful.

Related Turbulence Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...