Nav: Home

High throughput method to produce and screen engineered antimicrobial lanthipeptides

April 02, 2019

Nature has provided us with lots of antimicrobials. However, given the rapid increase of antimicrobial resistance, there is a need for the development of new-to-nature antibiotics. Lantibiotics are an interesting option. Molecular biologists from the University of Groningen and their colleagues in Switzerland and Germany have now developed a pipeline to create and screen large numbers of new lantibiotic peptides. A description of the method and the first results were published on 1 April in the journal Nature Chemical Biology.

Lantibiotic peptides are modified after they are produced by ribosomes. Enzymes can link different amino acids within the peptide chain to form rings. A well-known lantibiotic is nisin, a peptide with five rings that is used as a preservative in the food industry. 'There are different amino acid sequences that make up the rings,' explains University of Groningen Professor of Molecular Biology Oscar Kuipers. 'We know that a selection of 12 natural lantibiotics all have different combinations.'

Synthetic genes

Kuipers and his colleagues from the ETH Zürich (Switzerland) and University of Regensburg (Germany) devised a system to create large numbers of new lantibiotics: 'We synthesized DNA strands coding for the different rings and combined these genetic modules to form lantibiotic genes coding for random combinations of five rings.' The gene library that they created contained around 14,000 synthetic genes.

The next step was to screen the gene products for antimicrobial potential. To do this, they modified a technique developed for enzyme screening, based on micro-alginate beads. Inside these beads - each around 70 micrometers in diameter - bacteria can grow. The genes from the library were put into a producer strain, containing a red fluorescent marker. 'We diluted these bacteria so that we would end up with one or zero cells per bead. We also added a target strain that could be killed by the lantibiotics; those cells were used at a higher concentration of around 50 per bead.' The target cells carried a green fluorescent marker and produced a peptidase that activated the precursor lantibiotics secreted by the producer cells.


When the beads were incubated, the producer strain formed a single colony inside, secreting lantibiotics. These peptides could not leave the beads. The number of green colonies growing inside each bead was negatively correlated with the antimicrobial effect of the activated lanthipeptides. Using a fluorescence-assisted cell sorter designed for particles, it was possible to screen 50,000 beads per hour and to select beads with low levels of green fluorescence.

But this screening was by no means the end of the work that needed to be done. The next step was to isolate producer colonies from the selected beads that showed a strong antimicrobial effect. This was straightforward; however, the exact characterization of the product formed turned out to be difficult because of the low production levels inside the bead. 'We first had to grow them in larger quantities before we could analyze the lantibiotic produced.' Another complication was that the enzymes producing the rings didn't work with perfect accuracy. 'Even in one colony, where all cells have the same DNA, up to five or six different lanthipeptides could be produced.'

Rational design

In the end, a series of lanthipeptides with a strong antimicrobial effect was isolated and characterized. 'We found peptides with different antibiotic activities, although several peptides looked a bit like nisin or epidermin. It turned out that we had even recreated nisin in our gene library.' The experiment provided a lot of information about the structure-function relationship of the different rings in the lantibiotic peptides. This can now be used for a rational design approach to create new antibiotics.

A second conclusion from the study is that the pipeline - from producing a gene library to screening and characterization - works very efficiently. The next step is to use a real pathogen as a reporter strain, instead of the Lactococcus cells used in the first round. 'And we are now working to create peptides with just one ring. The five-ring peptides that we produced in this study are too large for pharmaceutical use. Many antibiotics resemble a one-ring structure, similar to that of vancomycin.' These antibiotics are made by specific enzymatic linkage of amino acids, whereas the lantibiotics are produced from genes by ribosomes. 'This means that we can use rapid molecular biology techniques to create and screen large libraries.'
Reference: Steven Schmitt, Manuel Montalbán-López, David Peterhoff, Jingjing Deng, Ralf Wagner, Martin Held, Oscar P. Kuipers & Sven Panke: Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale. Nature Chemical Biology 1 April 2019

University of Groningen

Related Amino Acids Articles:

Simulating amino acid starvation may improve dengue vaccines
In a new paper in Science Signaling, researchers at the University of Hyderabad in India and the Cornell University College of Veterinary Medicine show that a plant-based compound called halofuginone improves the immune response to a potential vaccine against dengue virus.
CoP-electrocatalytic reduction of nitroarenes: a controllable way to azoxy-, azo- and amino-aromatic
The development of a green, efficient and highly controllable manner to azoxy-, azo- and amino-aromatics from nitro-reduction is extremely desirable both from academic and industrial points of view.
Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.
Metabolic reprogramming of branched-chain amino acid facilitates drug resistance in lung cancer
Research teams led by Dr. Ji Hongbin at the Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences, Dr.
Researchers develop fast, efficient way to build amino acid chains
Researchers report that they have developed a faster, easier and cheaper method for making new amino acid chains -- the polypeptide building blocks that are used in drug development and industry -- than was previously available.
Characterisation of the structure of a member of the L-Amino acid Transporter (LAT) family
Mutations in L-amino acid transporters (LATs) can lead to a wide range of conditions, such as autism, hearing loss and aminoacidurias.
Model learns how individual amino acids determine protein function
A machine-learning model from MIT researchers computationally breaks down how segments of amino acid chains determine a protein's function, which could help researchers design and test new proteins for drug development or biological research.
Starving leukemia cells by targeting amino acids
Eliminating ASCT2 selectively stops the growth of leukemia cells, while having limited effects on healthy blood cells and hematopoetic (blood-forming) stem cells.
Unveiling the role of selenocysteine, the mysterious 21st amino acid
Selenocysteine is an essential amino acid for certain species, such as humans and the other vertebrates, although it has disappeared from others, such as insects.
Novel electron microscopy offers nanoscale, damage-free isotope tracking in amino acids
A new electron microscopy technique that detects the subtle changes in the weight of proteins at the nanoscale -- while keeping the sample intact -- could open a new pathway for deeper, more comprehensive studies of the basic building blocks of life.
More Amino Acids News and Amino Acids Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab