Sun, moon and sea as part of a 'seismic probe'

April 02, 2019

Anyone who wants to take a look inside the Earth needs a signal that can penetrate rocks, minerals and other opaque material. Seismic waves represent such a signal. If you record them with a seismometer, you can draw conclusions from the recorded data about the state of the subsurface through which the waves have passed. Knowledge of subsurface stress or strain fluctuations is just as important for safety in construction and mining, for example, as it is for monitoring geological processes in volcanoes and fault zones. Now Christoph Sens-Schönfelder from the GFZ German Research Centre for Geosciences in Potsdam and Tom Eulenfeld from the University of Jena have been able to show that the seismic waves excited by the surf, together with the effect of the Earth's tides on the subsoil, can be used to better understand the properties of the Earth.

Seismic waves not only provide information about the structure of the Earth's material, but also about the forces acting on it. For example, deformations of the subsurface change the velocity at which a wave travels. In order to draw conclusions about the subsurface forces from the velocity, however, data is required on how the material reacts to deformations under known conditions. Until now, such data have only been available from laboratory experiments, not from the field.

Christoph Sens-Schönfelder and Tom Eulenfeld have now succeeded for the first time in using a single seismometer to measure how sensitively seismic waves react to the deformation of the Earth's material they propagate in. In order to achieve that, they evaluated the velocity of the seismic noise generated by the surf. They report on this in the journal Physical Review Letters.

Measuring deformations in the Earth's interior from the surface

"We use two different signals that the environment provides us with naturally," explains Christoph Sens-Schönfelder. "Due to the tidal effect of the moon and the sun, the universe conducts a permanent deformation experiment with the Earth. The luminaries pull with great regularity on our planet. To observe this pulling, we use the seismic noise in the underground that is generated by the surf."

The relation investigated by Christoph Sens-Schönfelder and Tom Eulenfeld allows in principle a measurement of the deformations inside the Earth by means of recordings of seismographs on the Earth's surface. And that without having to drill into the ground.

The data that the two researchers investigated was recorded by the Integrated Plate Boundary Observatory in the Atacama Desert in northern Chile. Improved software was needed to detect even the slightest changes in wave velocity and to combine these changes with the deformation of the subsurface by the tides. Since this tidal deformation is known with high accuracy, it is possible to characterize the subsurface more comprehensively than before.

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

Related Moon Articles from Brightsurf:

New mineral discovered in moon meteorite
The high-pressure mineral Donwilhelmsite, recently discovered in the lunar meteorite Oued Awlitis 001 from Apollo missions, is important for understanding the inner structure of the earth.

First measurements of radiation levels on the moon
In the current issue (25 September) of the prestigious journal Science Advances, Chinese and German scientists report for the first time on time-resolved measurements of the radiation on the moon.

Researchers develop dustbuster for the moon
A team led by the University of Colorado Boulder is pioneering a new solution to the problem of spring cleaning on the moon: Why not zap away the grime using a beam of electrons?

First global map of rockfalls on the Moon
A research team from ETH Zurich and the Max Planck Institute for Solar System Research in Göttingen counted over 136,000 rockfalls on the moon caused by asteroid impacts.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Astronaut urine to build moon bases
The modules that the major space agencies plan to erect on the Moon could incorporate an element contributed by the human colonizers themselves: the urea in their pee.

How moon jellyfish get about
With their translucent bells, moon jellyfish (Aurelia aurita) move around the oceans in a very efficient way.

Does crime increase when the moon is full?
Noting that anecdotal beliefs can affect public policies and practices, a 'pracademics' team from NYU's Marron Institute of Urban Management worked with public safety personnel to examine the commonly held axiom that crime rises with the full moon -- and found that the evidence is just not there.

Soil on moon and Mars likely to support crops
Researchers at Wageningen University & Research in the Netherlands have produced crops in Mars and moon soil simulant developed by NASA.

Are we prepared for a new era of field geology on the moon and beyond?
Space agencies must invest more resources on field geology training of astronauts to take full advantage of scientific opportunities on the moon and other planetary bodies, Kip Hodges and Harrison Schmitt urge, in an Editorial.

Read More: Moon News and Moon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to