New plastic films deflect or trap heat with zero energy required

April 02, 2019

WASHINGTON -- Researchers have developed new plastic films that stay cool when exposed to sunlight and are very lightweight, strong and bendable. The versatile materials come in a variety of colors and could be incorporated into architectural and wearable products to regulate the temperature of buildings and people without requiring any power.

"Materials used for wearable technologies and architecture applications require simultaneous control of multiple properties to combine visual appeal with thermal comfort," said Svetlana Boriskina, Massachusetts Institute of Technology, USA, and leader of the research team that developed the materials. "We accomplished this challenging balance by creating the first plastic-based flexible material that combines various optical properties with passive thermal regulation via both conduction and radiation."

In The Optical Society (OSA) journal Optical Materials Express, the researchers describe how they created the new films by engineering the properties of the commonly used and inexpensive plastic polyethylene and then added color using nanoparticles and pigments. The resulting composite films are durable yet flexible and offer a variety of combinations of optical, thermal and mechanical properties.

In addition to staying cool when exposed to light, the new materials can also be engineered to trap heat, which could be used to make warm clothes or to create camouflage that hides a person or vehicle from night vision cameras by cloaking the heat they produce.

"The materials and processes we used to make these composite films are already commercially available and could likely be used for inexpensive high-throughput fabrication of the films on large scales," said Boriskina. "The films have a host of potential applications, including being used as substrates and overcoats for thin-film solar cells and other flexible electronic devices as well as for a variety of wearable devices and garments.

Stretching plastic films

Typically, the color and temperature control properties of materials are optimized separately for different applications. To modify these properties simultaneously, the researchers began with films made of ultra-high molecular weight polyethylene. By physically stretching the films to various degrees, the researchers found they could change the material's optical, mechanical and thermal properties.

"Stretching the film forces the polymer chains in the plastic to align in one direction parallel to each other, which is very different than what is seen in typical plastics," explained Boriskina. "We demonstrated that this stretching gives the plastic new and useful properties, including ultra-high thermal conductivity, increased broadband transparency, reduced haze, raised melting temperature and high tensile strength."

To add color and additional optical properties to the films, the researchers embedded various nanoparticles into the polymer before stretching the material. Using this process, it is possible to design a composite that does not get hot under sunlight by using nanoparticles that absorb visible light but do not absorb the infrared solar heat. Using particles that efficiently scatter mid-infrared light, on the other hand, will make a material that traps heat.

Films with optimized haze parameters could be used as transparent overcoats on thin-film solar cells to increase light absorption while simultaneously helping to reduce the solar cell temperature and increase efficiency.

Testing the samples

The researchers created a variety of sample films and tested them using artificial sunlight from a solar simulator in the lab. Films containing dark silicon nanoparticles, for example, exhibited temperatures 20 degrees Celsius cooler than a black reference paper colored with black dyes and pigments. Using infrared camera imaging, the researchers also observed that heat spread laterally along a sample illuminated by a laser beam. This type of heat spreading helps reduce the temperature of the illuminated hot spot and promotes cooling because the heat travels to areas of the material surface not directly illuminated by light.

The researchers plan to test their new materials outside with natural sunlight before moving forward with commercialization plans. They are also using their findings from this research to develop polyethylene fibers and woven or knitted textiles that would be useful for wearable technologies.
This research involved collaborators from the Combat Capabilities Development Command Soldier Center and was funded by the U.S. Army.

Paper: L. M. Lozano, S. Hong, Y. Huang, H. Zandavi, Y. Ait El Aoud, Y. Tsurimaki, J. Zhou, Y. Xu, R. M. Osgood III, G. Chen, S. V. Boriskina. "Optical engineering of polymer materials and composites for simultaneous color and thermal management," Opt. Mater. Express 9, 5, 1990-2005 (2019).


About Optical Materials Express

Optical Materials Express (OMEx) is an open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. OMEx, which launched in April 2011, primarily emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The editor-in-chief for OMEx is Alexandra Boltasseva from Purdue University. For more information, visit: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit

Media Contact:

The Optical Society

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to