Artificial intelligence helps to better assess treatment response of brain tumors

April 02, 2019

A team from Heidelberg University Hospital and the German Cancer Research Centre has developed a new method for the automated image analysis of brain tumors. In their recent publication, the authors show that machine learning methods carefully trained on standard magnetic resonance imaging (MRI) are more reliable and precise than established radiological methods in the treatment of brain tumors. Thus, they make a valuable contribution to the individualized treatment of tumors. In addition, the validated method is an important first step towards the automated high-throughput analysis of medical image data of brain tumors.

Gliomas are the most common and most malignant brain tumors in adults. In Germany, approximately 4,500 people are diagnosed with a glioma every year. The tumors often cannot be completely removed by surgery. Chemotherapy or radiotherapy are only effective to a limited extent because the tumors are highly resistant. New and precisely validated treatment approaches are therefore urgently needed.

One of the essential criteria for the precise assessment of the efficacy of a new therapy for brain tumors is the growth dynamic, which is determined by MRI. However, the manual measurement of tumor expansion in two planes in the contrast-enhanced MRI scans is prone to errors and leads to slightly different results. "This can have a negative effect on the assessment of therapy response and hence the reproducibility and precision of scientific statements based on imaging," explains Martin Bendszus, Medical Director of the Department of Neuroradiology at the University Hospital in Heidelberg.

In their current study, doctors and scientists from the University Hospital of Heidelberg and the German Cancer Research Center (DKFZ) describe the huge potential of machine learning methods in radiological diagnostics. The team has developed neuronal networks in order to assess and clinically validate the therapeutic response of brain tumors on the basis of MRI in a standardized and fully automated way. A team led by Philipp Kickingereder from the Department of Neuroradiology at Heidelberg University Hospital, researchers from the Division of Medical Image Processing (head: Klaus Maier-Hein) at the German Cancer Research Center and colleagues from the National Center for Tumor Diseases (NCT) and the Neurological Department of the University Hospital Heidelberg (Medical Director: Wolfgang Wick) worked together on this project.

Using a reference database with MRI scans of almost 500 brain tumor patients at Heidelberg University Hospital, the algorithms were able to automatically recognize and localize brain tumors using artificial neural networks. In addition, the algorithms were trained to volumetrically measure the individual areas (contrast medium-absorbing tumor portion, peritumoral edema) and to precisely assess the response to therapy.

The results were validated in cooperation with the European Organization for Research and Treatment of Cancer (EORTC). "The evaluation of more than 2,000 MRI scans of 534 glioblastoma patients from all over Europe shows that our computer-based approach allows a more reliable assessment of therapy response than the conventional method of manual measurement. We were able to improve the reliability of the assessment by 36 percent. This can be crucial for the image-based assessment of therapy efficacy in clinical trials. The prediction of overall survival was also more precise with our new method," explains Kickingereder.

The goal of the Heidelberg physicians and scientists is to use the promising technology for the standardized and fully automated assessment of the therapy response of brain tumors as quickly as possible in clinical studies and, in future, also in clinical routine. In addition, the researchers designed and evaluated a software infrastructure that enables the complete integration of the new technique into existing radiological infrastructure. "In this way, we are creating the prerequisites for broad application and fully automated processing and analysis of MRI scans of brain tumors within a few minutes," explains Klaus Maier-Hein.

The new technology is currently being re-evaluated at the NCT Heidelberg as part of a clinical study to improve the treatment of glioblastoma patients. "For precision therapies, a standardized and reliable assessment of the effectiveness of the new treatment approaches is of outstanding importance. The technology we have developed may be able to make a decisive contribution here," explains Wolfgang Wick.

"With this study, we were able to demonstrate the great potential of artificial neural networks in radiological diagnostics," summarizes Philipp Kickingereder. "In the future, we want to advance the technology for automated high-throughput analysis of medical image data and transfer it not only to brain tumors but also to other diseases such as brain metastases or multiple sclerosis," adds Klaus Maier Hein.
-end-
Kickingereder P, Isensee F, Tursunova I, Petersen J, Neuberger U, Bonekamp D, Brugnara G, Schell M, Kessler T, Foltyn M, Harting I, Sahm F, Prager M, Nowosielski M, Wick A, Nolden M, Radbruch A, Debus J, Schlemmer HP, Heiland S, Platten M, von Deimling A, van den Bent MJ, Gorlia T, Wick W, Bendszus M, Maier-Hein KH. Automated quantitative tumor response assessment of MRI in neuro-oncology with artificial neural networks: a multicenter, retrospective study. Lancet Oncology 2019, http://dx.doi.org/10.1016/S1470-2045(19)30098-1

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 3,000 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg, where promising approaches from cancer research are translated into the clinic. In the German Consortium for Translational Cancer Research (DKTK), one of six German Centers for Health Research, DKFZ maintains translational centers at seven university partnering sites. Combining excellent university hospitals with high-profile research at a Helmholtz Center is an important contribution to improving the chances of cancer patients. DKFZ is a member of the Helmholtz Association of National Research Centers, with ninety percent of its funding coming from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Joint press release of the German Cancer Research Center and the University Hospital Heidelberg

German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ)

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.