Researchers unveil the universal properties of active turbulence

April 02, 2020

Turbulent flows are chaotic yet feature universal statistical properties.Over the recent years, seemingly turbulent flows have been discovered in active fluids such as bacterial suspensions, epithelial cell monolayers, and mixtures of biopolymers and molecular motors. In a new study published in Nature Physics, researchers from the University of Barcelona, Princeton University and Collège de France have shown that the chaotic flows in active nematic fluids are described by distinct universal scaling laws.

Turbulence is ubiquitous in nature, from plasma flows in stars to large-scale atmospheric and oceanic flows on Earth, through air flows caused by an airplane. Turbulent flows are chaotic, creating eddies that appear and break into smaller swirls constantly. However, when this complex chaotic behavior is considered in a statistical sense, turbulence follows universal scaling laws. This means that the statistical properties of turbulence are independent in both the way in which turbulent flows are generated, and the properties of the specific fluid that we look at, such as its viscosity and density.

In the study now published in Nature Physics, researchers have revisited this notion of universality in the context of active fluids. In active turbulence, flows and eddies are not generated by the action of some external agent (such as temperature gradients in the atmosphere) but rather by the active fluid itself. The active nature of these fluids relies on their ability to internally generate forces, for example due to the swimming of bacteria or the action of molecular motors on biopolymers.

"When these active forces are sufficiently strong, the fluid starts to spontaneously flow, powered by the energy injected by the active processes" explains Ricard Alert, postdoctoral fellow at Princeton University. When active forces are strong, these spontaneous flows become a chaotic mix of self-generated eddies ? what we call active turbulence.

The authors focused on a specific type of active fluid: two-dimensional active nematic liquid crystals, which describe experimental systems such as cell monolayers and suspensions of biopolymers and molecular motors. Large-scale simulations showed that the active flows organize into a disordered pattern of eddies of a characteristic size (Fig. 1, Left). The researchers then studied the flows at much larger scales than the characteristic size of the eddies (Fig. 1, Right). They found that the statistical properties of these large-scale flows follow a distinct scaling law.

"We showed that this scaling law is universal, independent of the specific properties of the active fluid" points out Professor Jaume Casademunt from the Institute of Complex Systems (UBICS) of the University of Barcelona. This scaling law is the equivalent in active nematic fluids of Andrei Kolmogorov's 1941 scaling law for classic turbulence, but with a different exponent that results from the combination of inertia-less viscous flows and the internal, self-organized forcing of active fluids.

Another striking result of this research is that all the energy that is injected by the active forces at a given scale is dissipated by viscous effects at that same scale. As a consequence, in stark contrast to classic turbulence, no energy is left to be transferred to other scales. "Both in simulations and analytically, researchers proved that a minimal active nematic fluid self-organizes in a way such that the active energy injection exactly balances energy dissipation at each scale" concludes Jean-François Joanny, from the Collège de France.
Article reference:

R. Alert, J-F. Joanny, and J. Casademunt. "Universal scaling of active nematic turbulence". Nature Physics. DOI:

University of Barcelona

Related Turbulence Articles from Brightsurf:

Turbulence affects aerosols and cloud formation
Turbulent air in the atmosphere affects how cloud droplets form.

Atmospheric turbulence affects new particle formation: Common finding on three continents
New particle formation (NPF) over three countries is investigated using aerosol physicochemical quantities and turbulence information.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

Return of the Blob: Surprise link found to edge turbulence in fusion plasma
Correlation discovered between magnetic turbulence in fusion plasmas and troublesome blobs at the plasma edge.

Researchers unveil the universal properties of active turbulence
Turbulent flows are chaotic yet feature universal statistical properties.Over the recent years, seemingly turbulent flows have been discovered in active fluids such as bacterial suspensions, epithelial cell monolayers, and mixtures of biopolymers and molecular motors.

Unraveling turbulence
Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) may have identified a fundamental mechanism by which turbulence develops by smashing vortex rings head-on into each other, recording the results with ultra-high-resolution cameras, and reconstructing the collision dynamics using a 3D visualization program.

Researchers develop first mathematical proof for key law of turbulence in fluid mechanics
Turbulence is one of the least understood phenomena of the physical world.

A new parallel strategy for tackling turbulence on Summit
A Georgia Tech team developed an algorithm for simulating turbulence on Summit, the world's most powerful and smartest supercomputer.

Turbulence creates ice in clouds
Vertical air motions increase ice formation in mixed-phase clouds. This correlation was predicted theoretically for a long time, but could now be observed for the first time in nature.

Turbulence meets a shock
Interaction of shocks and turbulence investigated with a focus on high intensity turbulence levels.

Read More: Turbulence News and Turbulence Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to