Nav: Home

Study synthesizes what climate change means for Northwest wildfires

April 02, 2020

Recent years have brought unusually large and damaging wildfires to the Pacific Northwest - from the Carlton Complex Fire in 2014 that was the largest in Washington's history, to the 2017 fire season in Oregon, to the 2018 Maple Fire, when normally sodden rainforests on the Olympic Peninsula were ablaze. Many people have wondered what this means for the region's future.

A University of Washington study, published this winter in Fire Ecology, takes a big-picture look at what climate change could mean for wildfires in the Northwest, considering Washington, Oregon, Idaho and western Montana.

"We can't predict the exact location of wildfires, because we don't know where ignitions will occur. But based on historical and contemporary fire records, we know some forests are much more likely to burn frequently, and models can help us determine where climate change will likely increase the frequency of fire," said lead author Jessica Halofsky, a research scientist at the UW School of Environmental and Forest Sciences and with the U.S. Forest Service.

The review was done in response to a survey of stakeholder needs by the Northwest Climate Adaptation Science Center, a UW-hosted federal-university partnership. State, federal and tribal resource managers wanted more information on the available science about fire and climate change.

"We're on the cusp of some big changes. We expect that droughts will become more common, and the interaction of climate and fire could look very different by the mid-21st century," said David Peterson, professor at the UW School of Environmental and Forest Sciences. "Starting the process of adapting to those changes now will give us a better chance of protecting forest resources in the future."

The greatest increased risk was found for low-elevation ponderosa pine forests, of the type found at lower elevations on the east side of the Cascade Range in Washington, Oregon, Montana and Idaho. This ecosystem has the highest fire risk today and also has the highest increase in risk due to climate change. The authors predict with high confidence that wildfires in this region will become larger and more frequent.

"We can't attribute single fire events to climate change. But the trends in large fire events that have been occurring in the region are consistent with expected trends in a warming climate," said co-author Brian Harvey, assistant professor at the UW School of Environmental and Forest Sciences. His UW research group studies forests and fires in the Pacific Northwest and Northern Rockies.

The authors also summarize how other Northwest ecosystems might experience the combined threats of drought, warmer temperatures and insect outbreaks. Moist, coniferous forests -- found on the Olympic Peninsula, in Western Washington and in Northern Idaho -- will likely burn more often, but fires won't be significantly larger than they were historically. Fires in subalpine, high-elevation forests, found in mountainous terrain, will similarly become more frequent but only slightly larger or more severe.

After describing the threats, the authors evaluate potential strategies to prepare. Land managers could remove dry organic material, or fuels, and maintain forest densities at lower levels to reduce the severity of fires, since the severity of wildfire is more controllable than the frequency or total area burned. Thinning would also help the remaining trees to withstand drought. Planting genetically diverse seedlings could also help with regeneration after fires -- an important step for long-term survival of forests.

Rural landowners can also play a role, the authors write.

"Individual landowners can reduce hazardous fuels, promote species that can survive fire and drought, and increase diversity of species and structures across the landscape," Peterson said.

Historically the Northwest has had lower risk of wildfire than other states, such as California, but that may be changing.

"In general, the climate in the Northwest is cooler and wetter than in most low-elevation areas of California," Halofsky said. But the Northwest summers are dry and warm. "Climate change will accentuate dry summers, and Northwest climate will become more similar to current-day California climate, leading to more and bigger fires."
-end-
The study was funded by the U.S. Department of the Interior through its UW-hosted Northwest Climate Adaptation Science Center. Additional funding came from the U.S. Forest Service through its Pacific Northwest Research Station and Office of Sustainability and Climate.

For more information, contact Halofsky at jhalo@uw.edu, Harvey at bjharvey@uw.edu or Peterson at wild@uw.edu.

University of Washington

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.