Diagnosing cancer

April 03, 2017

Scientists at Ruhr-Universität Bochum have established a process for identifying biomarkers for the diagnosis of different types of cancer. With the aid of a specific type of infrared (IR) spectroscopy, the researchers applied an automated and label-free approach to detect tumour tissue in a biopsy or tissue sample. Unlike with label-based processes, such as are currently deployed by pathologists, the tissue remains unmodified. This, in turn, facilitates detailed protein analyses in the next step. Studying tissue samples from patients who suffered from lung or pleural cancer, the researchers identified protein biomarkers that are typical of the respective subtype of cancer.

The team of the research consortium "Protein Research Unit Ruhr within Europe" (PURE) has published their report in the journal "Scientific Reports".

Specific workflow established

With their current work, the researchers from Bochum put their vision for PURE fully into practice. "For the first time, the workflow that has been planned from the outset has been completely reproduced," explains Prof Dr Klaus Gerwert, Spokesman at PURE. In the process, the fresh tissue is instantly cooled, then brought to the study centre and documented. Afterwards, traditional diagnostics is carried out, which is standard for every patient, while simultaneously an analysis using the process made in Bochum is performed.

For the purpose of the study, the researchers worked with tissue samples of so-called diffuse malignant mesothelioma. They compared two mesothelioma subtypes -- the sarcomatoid and epithelioid type. This type of cancer often scatters into the lung and is usually terminal.

Bochum-made process for diagnostics

The researchers represented the spreading of a tumour with an IR microscope with high spatial resolution. Klaus Gerwert and Dr Frederik Großerüschkamp developed this imaging method under the umbrella of PURE. It enables them to distinguish between different subtypes of cancer -- an important information for prognosis and therapy. It does not require any dye or antibodies, which are necessary in traditional pathology. Since the tissue remains unmodified, the same sample can subsequently be analysed on the molecular level.

After the tumour has been localised in the tissue sample, the researchers cut it out using special laser technology. At Medizinisches Proteom-Center at Ruhr-Universität, likewise a member of the PURE consortium, experts headed by Prof Dr Barbara Sitek and Prof Dr Katrin Marcus analyse the protein composition of the extracted tissue using mass spectrometry.

Personalised diagnosis

Thus, the researchers are able to determine which of the more than 2,000 identified proteins in the sarcomatoid mesothelioma are noticeably increased or reduced when compared to the epitheloid mesothelioma. "Consequently, we can determine changes in signal transduction in the cancer cells for each patient individually," explains Klaus Gerwert. "This is crucial information for precise therapy."

The thus identified proteins might in future be used as biomarkers, in order to detect the type of cancer in other patients. Researchers studied the correlation of the detected proteins and the biomarkers that are currently used in traditional pathology. The result: the method made in Bochum also identified the five biomarkers which are already used to diagnose the mesothelioma subtypes. "Thereby we have validated our method," explains Gerwert. The PURE researchers also discovered additional biomarkers. Gerwert: "Those biomarkers are yet to be validated with a larger cohort in the next step."

"At present, the newly developed label-free approach is unique, and it opens up the possibility to search specifically for biomarkers in future," says Frederik Großerüschkamp.

The objective: finding biomarkers in body fluids

Gerwert and his colleagues intend to apply the method for other types of cancer and to thus identify new biomarkers. The Head of the Department of Biophysics outlines a prospect: "Our objective is to detect the biomarkers that we have now identified in tissue also in body fluids such as blood and urine," says Gerwert. "This would facilitate non-invasive, precise and predictive diagnosis with the aid of a simple antibody test."

Diffuse malignant mesothelioma

The diffuse malignant mesothelioma is primarily triggered due to exposure to asbestos. The tumours take very diverse forms, and a comparably small number of people are affected - this renders research quite difficult. "Especially in cases such as these, our new method might provide a valuable alternative in biomarker research," elaborates Großerüschkamp.

The project was carried out in collaboration with the team headed by Prof Dr Thomas Brüning and Prof Dr Thomas Behrens from the Institute of Prevention and Occupational Medicine of the Deutsche gesetzliche Unfallversicherung. The tissue samples were provided by Ruhrlandklinik in Essen, where they were pathologically characterised by Prof Dr Dirk Theegarten.

Ruhr-University Bochum

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.