Nav: Home

A promising strategy to increase activity in antimicrobial peptides

April 03, 2017

In an article published recently in Plos One, researchers from INRS-Institut Armand-Frappier Research Centre reported a strategy that could lead to the discovery of new cationic antimicrobial peptides (CAMPs) with greatly enhanced antimicrobial properties. The peptide modified for the study retained considerable activity against biofilms responsible for increasing the severity of various infections. The strategy thus holds promise for combatting multidrug resistant bacteria.

For the purpose of the study, the researchers selected a peptide--pep1037--already known for its antimicrobial potential and antibiofilm activity against Pseudomonas aeruginosa and Burkholderia, two pathogens responsible for serious complications in individuals with cystic fibrosis. The peptide was modified by adding a cysteine to the end to generate a dimer. The antimicrobial activity of the new molecule was 60 times greater than that of the original peptide.

"Our results show that the dimer is of significant interest because it has a dual potential to inhibit both bacterial and biofilm growth. It could potentially be used for therapy in combination with clinically relevant antibiotics," explained the authors of the study.

Although there are currently no clinically approved antimicrobials that target bacterial biofilms, an estimated 80% of all bacterial infections have a biofilm component. These infections are much more difficult to eradicate because they are 10-1,000 times more resistant to antibiotic treatment. The formation of biofilms is associated with severe antibiotic resistance in the lungs of patients with cystic fibrosis, among others.

To date, very few studies have reported on the effect of dimerizing cationic antimicrobial peptides by adding a cysteine, especially at the specific location modified by the researchers, i.e., at the end.

The results obtained pave the way to improving this class of antibiotics, which occur naturally in many organisms.
-end-
About the study

The study was conducted by Amal Thamri, Myriam Létourneau, Alex Djoboulian, David Chatenet, Eric Déziel, Annie Castonguay, and Jonathan Perreault of INRS-Institut Armand-Frappier Research Centre. The results are presented in the article "Peptide modification results in the formation of a dimer with a 60-fold enhanced antimicrobial activity," which appeared in the March 2017 issue of Plos One. The researchers received financial support from Fonds de recherche du Québec -- Santé; Natural Sciences and Engineering Research Council of Canada; and Fondation Armand-Frappier. DOI: 10.371/journal.pone0173783

Institut national de la recherche scientifique - INRS

Related Antibiotics Articles:

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.
Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.
Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.
Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.
Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.
Antibiotics with novel mechanism of action discovered
Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics.
Resistance can spread even without the use of antibiotics
Antibiotic resistance does not spread only where and when antibiotics are used in large quantities, ETH researchers conclude from laboratory experiments.
Selective antibiotics following nature's example
Chemists from Konstanz develop selective agents to combat infectious diseases -- based on the structures of natural products
Antibiotics can inhibit skin lymphoma
New research from the LEO Foundation Skin Immunology Research Center at the University of Copenhagen shows, surprisingly, that antibiotics inhibit cancer in the skin in patients with rare type of lymphoma.
Antibiotics may treat endometriosis
Researchers at Washington University School of Medicine in St. Louis have found that treating mice with an antibiotic reduces the size of lesions caused by endometriosis.
More Antibiotics News and Antibiotics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.