Cation-mixing induced highly efficient sodium storage for layered cathodes

April 03, 2018

Sodium is one of the most abundant elements, widely distributed on the earth and in the ocean. Thus, sodium-ion batteries attract much attention due to the application in large-scale energy storage. The most popular cathodes for SIBs, i.e., the layered sodium-containing oxides, usually exhibit reversible host rearrangement between P-type and O-type stacking upon charge/discharge. Herein such host rearrangement is unfavorable due to the fact: (1) the O-type phase is undesirable relative to the P-type, as the latter possesses more open framework for Na-ion transport; (2) the rearrangements of host structure indicate sluggish reaction dynamics, which contributes to the voltage hysteresis and poor rate capability of the electrode; (3) the large variation in lattice parameters between P-type and O-type leads to elastic strain, causing the loss of active material and the resulting capacity fade.

On the basis of the above reasons, Haoshen Zhou and Shaohua Guo's Group from Nanjing University synthesized the O3-type Na0.8Ni0.3Co0.1Ti0.6O2 (NNCT), and found that NNCT electrode exhibited the cation-mixing characteristic by introducing transition-metal ions into Na layers during initial charge, thus suppressing host rearrangement upon charge/discharge by the induced "pinning effect". Moreover, the O-type phase is undesirable relative to the P-type, as the latter possesses more open framework for Na-ion transport. Consequently, the NNCT with stable P3-stacking after initial charge process exhibits superior rate capability, high energy efficiency and excellent cycling performance. This group characterized structural evolution during electrochemical sodium insertion/extraction by in-situ XRD and ex-situ STEM experiments. Fig. 1 shows the structural evolution of NNCT electrode during the first cycle. NNCT transforms to P3-type in the initial charge process as most others, but unexpectedly maintains the P3-stacking in the subsequent cycles. STEM results indicate the presence of transition-metal ions in sodium layers at charged NNCT electrode, exhibiting the cation-mixing phenomenon.

The electrochemical performances of NNT and NNCT cathodes were comparatively studied in Fig. 2. The almost overlap curves suggest the high reversibility of NNCT with a reversible capacity of 92 mAh* g-1 at 0.05C rate. The discharge curves show a high capacity retention (92%) and negligible voltage degradation (0.03V) over 300 cycles are observed. The round-trip energy efficiency is stabilized at 93% for the NNCT electrode, and the Coulombic efficiency of NNCT cathode is around 99.7%. More importantly, NNCT cathode performs excellent long-term cycling performance, i.e., 98% capacity retention after 1000 cycles.

This work for the first time proposed the "pinning effect" induced by introducing cation-mixing could effectively suppress the phase transition and relative host arrangement, thus greatly enhancing the structural stability. The findings underline the critical role of stable sodium storage framework, and also open a new path for design of high-efficiency energy storage materials.
More information found in the source text: Shaohua Guo, Yang Sun, Pan Liu, Jin Yi, Ping He, Xiaoyu Zhang, Yanbei Zhu, Ryosuke Senga, Kazu Suenaga, Mingwei Chen, Haoshen Zhou, Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries, Science Bulletin, 2018, 63(6): 376-384, DOI: 10.1016/j.scib.2018.02.012

Acknowledgements: National Basic Research Program of China (2014CB932300), NSF of China (21373111, 21633003 and 51602144) and Jiangsu Province (BK20170630)

Science China Press

Related Sodium Articles from Brightsurf:

Sodium found to regulate the biological clock of mice
A new study from McGill University shows that increases in the concentrations of blood sodium can have an influence on the biological clock of mice, opening new research avenues for potentially treating the negative effects associated with long distance travel or shift work.

Researchers develop viable sodium battery
Washington State University and Pacific Northwest National Laboratory researchers have created a sodium-ion battery that holds as much energy and works as well as some commercial lithium-ion battery chemistries, making for a potentially viable battery technology out of abundant and cheap materials.

Elucidating the mechanism of a light-driven sodium pump
Researchers at the Paul Scherrer Institute PSI have succeeded for the first time in recording, in action, a light-driven sodium pump from bacterial cells.

Intravenous sodium nitrite ineffective for out-of-hospital cardiac arrest
Among patients who had an out-of-hospital cardiac arrest, intravenous sodium nitrite given by paramedics during resuscitation did not significantly improve their chances of being admitted to or discharged from the hospital alive, according to research presented at the American College of Cardiology's Annual Scientific Session Together with World Congress of Cardiology (ACC.20/WCC).

Study finds glutamates such as MSG can help reduce Americans' sodium intake
A new study indicates that the substitution of glutamates such as MSG for salt can reduce Americans' sodium intake by up to 7-8 percent.

High-performance sodium ion batteries using copper sulfide
Researchers presented a new strategy for extending sodium ion batteries' cyclability using copper sulfide as the electrode material.

Updated dietary reference intakes for sodium and potassium
A new report from the National Academies of Sciences, Engineering, and Medicine reviews current evidence and updates intake recommendations known as the Dietary Reference Intakes (DRIs) for sodium and potassium that were established in 2005.

Sodium intake associated with increased lightheadedness in context of DASH-sodium trial
Researchers at Beth Israel Deaconess Medical Center found that higher sodium intake, when studied in the context of the DASH-Sodium trial (Dietary Approaches to Stop Hypertension), increases lightheadedness.

Sodium is the new lithium: Researchers find a way to boost sodium-ion battery performance
NITech scientists have found the desirable component for sodium-ion batteries (SIB), which could contribute to boost SIB performance such as speed of charge.

Angiotensin receptor blockers normalize sodium excretion
Drugs that inhibit a hormone that constricts blood vessels also help improve sodium excretion in blacks who hold onto too much sodium in the face of stress, investigators report.

Read More: Sodium News and Sodium Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to