Nav: Home

Doing more with less in the study of plant chemical defense

April 03, 2019

Plants can't run away to avoid being eaten, so instead they employ a variety of chemical defenses to keep herbivores at bay. Understanding plant chemical defenses is critical for keeping crops healthy, and for answering a variety of more academic questions about ecology and evolution. However, current techniques for assessing plant chemical defenses are time consuming and require impractically large amounts of plant tissue. In research presented in a recent issue of Applications in Plant Sciences, Dr. Chandra Jack and colleagues devised a new technique for assessing plant chemical defenses that is less laborious and more practical for a variety of experimental applications.

Traditional methods of measuring defense compounds use light to measure different chemicals in leaves using an apparatus called a spectrophotometer. These methods require large tissue samples, meaning that multiple leaves must be pooled together, collapsing meaningful variation. The technique reported here, using a microplate reader, detected activity in samples smaller than 10 mg, or 2% of the traditional tissue sample weight.

"One of the biggest constraints is the amount of tissue that is needed for traditional spectrophotometer-based assays," said Dr. Jack, the lead author of the study. "Now, because researchers don't have to combine leaves from a single plant, they can better explore localized versus systemic responses, or monitor individual plant response over time... It allows us to measure population-level variation and to parse out the influence of environment on genes."

"The other constraint is the time needed to carry out these experiments," said Dr. Jack. The huge amounts of labor and time required to carry out assays using spectrophotometric methods put serious constraints on the number of samples that can be assessed. This limits feasible experimental designs, and consequently the types of questions one can hope to answer. Additionally, both the time and tissue demands of traditional methods make it more difficult to re-run a sample or reproduce a result. In this study, researchers were able to conduct a set of assays that would normally take 41 hours in only six hours.

Plant chemical defense is complex, involving the production of multiple compounds at once. While traditional techniques require separate extractions to assay each class of defense compounds, the technique presented here uses consolidated preparation buffers and protocols to extract multiple compounds at once. This makes it practical to measure a wider range of chemical responses, providing a more nuanced and higher-resolution picture of plant defense. "Plants produce so many secondary metabolites and enzymes in response to herbivore attack, that the story of plant defenses is not complete unless you assay multiple compounds," said Dr. Jack.

The method presented here, in which sample preparation buffers are consolidated and samples are run simultaneously on a microplate, vastly reduces the time and expense of assaying defense compounds. "For us it was a case of necessity being the mother of invention," said Dr. Jack. "I was planning to set up an experiment...and couldn't find high-throughput assays to accomplish what was needed." But in developing this technique, the authors opened up avenues of inquiry into plant defenses for others. Researchers can now investigate multiple defense compounds at once, look at localized and systemic responses, compare a larger sample of individuals, and replicate their findings much more feasibly than before.

"Originally, this wasn't going to be a stand-alone project," said Dr. Jack. "However, as we combed through the literature and invested so much time into the protocol, we realized that this would be useful for the scientific community and could impact so many different fields."
Chandra N. Jack, Shawna L. Rowe, Stephanie S. Porter, and Maren L. Friesen. 2019. A high-throughput method of analyzing multiple plant defensive compounds in minimized sample mass. Applications in Plant Sciences 7(1): e1210.

Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America, a nonprofit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. APPS is available as part of the Wiley Online Library.

For further information, please contact the APPS staff at

Botanical Society of America

Related Plant Sciences Articles:

Plant detectives develop new way to trace global spread of major plant disease
A team led by Oregon State University scientists has developed a way to potentially thwart the spread of a disease-causing bacterium that harms more than hundred plant species worldwide, an advance that could save the nursery industry billions of dollars a year.
A molecular map for the plant sciences
Plants are essential for life on earth. They provide food for essentially all organisms, oxygen for breathing, and they regulate the climate of the planet.
Behavioral sciences in the promotion of oral health
The importance and value of behavioral sciences in dentistry has long been recognized and over time behavioral sciences have expanded our understanding of oral health beyond 'disease' to a broader biopsychosocial concept of oral health.
'Big data' for life sciences
Scientists have produced a co-regulation map of the human proteome, which was able to capture relationships between proteins that do not physically interact or co-localize.
How a protein connecting calcium and plant hormone regulates plant growth
A new Tel Aviv University study finds that a unique mechanism involving calcium, the plant hormone auxin and a calcium-binding protein is responsible for regulating plant growth.
Tobacco plant 'stickiness' aids helpful insects, plant health
Researchers show beneficial relationship between 'sticky' tobacco plants and helpful insects that consume tobacco pests.
Social and behavioral sciences for the intelligence community
The social and behavioral sciences (SBS) offer an essential contribution to the mission of the U.S.
Preventing chemical weapons as sciences converge
Scientists from Bradford warn of increased chemical weapons risk during a period of very rapid scientific change.
Plant growth-promoting bacteria enhance plant salinity tolerance
Soil salinity is a serious problem in crop production, but the work of scientists helps to relieve it.
MSU plant sciences faculty part of international discovery in wheat genome sequence
Hikmet Budak, Winifred Asbjornson Plant Sciences Chair, is one of 200 international scientists who co-published an article this week detailing the description of the genome of bread wheat.
More Plant Sciences News and Plant Sciences Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: Support Radiolab today at