Nav: Home

Fungal mating: Next weapon against corn aflatoxin?

April 03, 2019

It's not fun when a fungus contaminates crops. Safe native fungi, however, show promise in the fight against toxic fungal contamination.

The fungus Aspergillus flavus can infect several crops, including corn. Some varieties, or strains, of A. flavus produce aflatoxins. Aflatoxin contamination costs U.S. farmers billions of dollars every year. Worse, aflatoxins are harmful for humans and animals.

To reduce aflatoxin contamination of crops, farmers use safe commercial strains of A. flavus. These biocontrol strains do not produce aflatoxins. When applied to crops, the biocontrol strains outcompete the harmful aflatoxin-producing fungi. That reliably reduces levels of aflatoxins in the harvest, transport, and storage stages.

However, commercial strains may not be the only answer. A new study shows that using safe, native strains of A. flavus can be as effective, or even more effective, than commercial strains.

"Using native A. flavus strains could have many advantages," says Ignazio Carbone, lead author of the new study. "Native strains may be better adapted to the soil type and weather conditions. Therefore, they may perform better in the field compared to non-native strains."

Carbone is a researcher at North Carolina State University.

Moreover, using commercial strains can have some disadvantages. They usually need to be reapplied each year, at a cost of $20 per acre. Also, the application has to be done aerially or manually. "That can deter farmers from using commercial strains," Carbone explains.

Native strains, on the other hand, occur naturally in growing areas. They may be more persistent in the soil and not need to be reapplied every year.

Carbone and colleagues tested native strains of A. flavus that produce no or low levels of aflatoxin. They also tested commercial strains. Both reduced crop aflatoxin levels.

Corn for human consumption can have maximum aflatoxin levels of 20 parts per billion, per FDA regulation.

Untreated crops had aflatoxin levels above 35 parts per billion. Native and commercial strains reduced aflatoxin levels to lower than 10 parts per billion.

Unexpectedly, the study also showed that certain combinations of native strains are more effective than commercial strains in reducing aflatoxin levels. That's because the combinations take advantage of fungal biology: their mating types are compatible, allowing them to reproduce and sustain their population.

When the researchers applied native strains of compatible mating types to the test plots, aflatoxin levels were reduced to less than 2 parts per billion in some cases. This was a better outcome than any commercial strain.

"Our results suggest that using native strains could lead to sustained reductions of aflatoxin levels. Using native strains could be very cost-effective for farmers over the long term," says Carbone.

Although this study was conducted in North Carolina, Carbone anticipates the approach can work in other areas. A preliminary experiment in Texas also showed that paired native strains reduced aflatoxin levels more efficiently compared to a single commercial strain.

"We need to continue testing this approach in cornfields across different states," says Carbone. "We also need to monitor aflatoxin levels over several growing seasons."

Future field trials may include testing current commercial strains plus a compatible mating partner strain. Different combinations of native strains may also be tested, says Carbone.

Can this approach go beyond aflatoxin? Carbone is optimistic. "Fungal toxins pose a continual threat to food safety. Our approach can potentially be applied to other toxin-producing fungi as well."
-end-
Read more about Carbone's research in Agronomy Journal. This work was supported by the Agriculture and Food Research Initiative Competitive Grants Program grant no. 2013-68004-20359 from the USDA National Institute of Food and Agriculture (NIFA).

American Society of Agronomy

Related Crops Articles:

Cover crops can benefit hot, dry soils
Soil gets more than just 'cover' from cover crops.
'Lost crops' could have fed as many as maize
Grown together, newly examined 'lost crops' could have produced enough seed to feed as many indigenous people as traditionally grown maize, according to new research from Washington University in St.
Soil on moon and Mars likely to support crops
Researchers at Wageningen University & Research in the Netherlands have produced crops in Mars and moon soil simulant developed by NASA.
Cover crops, compost and carbon
Comparing techniques in organic farming that influence soil health.
Worm pheromones protect major crops
Protecting crops from pests and pathogens without using toxic pesticides has been a longtime goal of farmers.
The transgenic key to more productive crops
Transgenic tobacco plants engineered with synthetic metabolic pathways designed to bypass the inefficient and costly side effects of natural photorespiration show large increases in productivity -- as much as 40 percent over unmodified tobacco plants, a new study says.
Scientists consider climate change-resistant crops
Meng Chen and his team identified the genetic mechanism used by all plants as they respond to daylight conditions as well as the ability to sense temperature.
Global warming: More insects, eating more crops
Rising global temperatures are expected to significantly increase crop losses from insects, especially in temperate regions, a new study finds.
Cover crops in nitrogen's circle of life
A circle of life-and nitrogen-is playing out in farms across the United States.
Root discovery may lead to crops that need less fertilizer
Bean plants that suppress secondary root growth in favor of boosting primary root growth forage greater soil volume to acquire phosphorus, according to Penn State researchers, who say their recent findings have implications for plant breeders and improving crop productivity in nutrient-poor soils.
More Crops News and Crops Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.