Nav: Home

Researchers pinpoint origin of photons in mysterious gamma-ray bursts

April 03, 2019

Scientists from the RIKEN Cluster for Pioneering Research and collaborators have used simulations to show that the photons emitted by long gamma-ray bursts--one of the most energetic events to take place in the universe--originate in the photosphere--the visible portion of the "relativistic jet" that is emitted by exploding stars.

Gamma-ray bursts are the most powerful electromagnetic phenomenon observed in the universe, releasing as much energy in just a second or so as the sun will release over its entire lifetime. Though they were discovered in 1967, the mechanism behind this enormous release of energy long remained mysterious. Decades of studies finally revealed that long bursts--one of the types of bursts--originate from relativistic jets of matter ejected during the death of massive stars. However, exactly how the gamma-rays are produced from the jets is still veiled in mystery today.

The current research, published in Nature Communications, began from a discovery called the Yonetoku relation, which was originally made by one of the authors of the paper. This relation between the spectral peak energy and peak luminosity of GRBs is the tightest correlation found so far in the properties of GRB emission. It thus provides the best diagnostic so far for explaining the emission mechanism, and the strictest test for any model of gamma-ray bursts. Incidentally, the relationship also meant that long gamma-ray bursts could be used as a "standard candle" for measuring distance, allowing us to peer further into the past than type 1A supernovae, which are commonly used today but are much dimmer than the bursts. This would make it possible to gain insights into the history of the universe, and could give us insights into mysteries such as dark matter and dark energy.

Using computer simulations performed on several supercomputers, including Aterui of the National Astronomical Observatory of Japan, Hokusai of RIKEN, and Cray xc40 of the Yukawa Institute for Theoretical Physics, the group focused on the so-called "photospheric emission" model, one of the leading models for the emission mechanism of GRBs. This model postulates that the photons visible on earth are emitted from the photosphere of the relativistic jet. As the jet expands, it becomes easier for photons to escape from within it, since there are fewer objects available to scatter the light. Thus, the "critical density" --the place where it becomes possible for the photons to escape-- moves downward through the jet, to material that was originally at higher and higher densities.

To test the validity of the model, the team set out to test it in a way that took into account the global dynamics of relativistic jets and radiation transfer. By using a combination of three-dimensional relativistic hydrodynamical simulations and radiation transfer calculations to evaluate photospheric emissions from a relativistic jet breaking out of massive star envelope, they were able to determine that at least in the case of long GRBs--the type associated with such collapsing massive stars--the model worked. Their simulations revealed that the Yonetoku relation could be reproduced as a natural consequence of the jet-stellar interactions. "To us," says Hirotaka Ito of the Cluster for Pioneering Research, "this strongly suggests that photospheric emission is the emission mechanism of GRBs."

He continues, "While we have elucidated the origin of the photons, there are still mysteries concerning how the relativistic jets themselves are generated by the collapsing stars. Our calculations should provide valuable insights for looking into the fundamental mechanism behind the generation of these tremendously powerful events."
-end-


RIKEN

Related Photons Articles:

The multi-colored photons that might change quantum information science
With leading corporations now investing in highly expensive and complex infrastructures to unleash the power of quantum technologies, INRS researchers have achieved a breakthrough in a light-weight photonic system created using on-chip devices and off-the-shelf telecommunications components.
*Ring, Ring* 'Earth? It's space calling, on the quantum line'
In a landmark study, Chinese scientists report the successful transmission of entangled photons between suborbital space and Earth.
Unpolarized single-photon generation with true randomness from diamond
The Tohoku University research group of Professor Keiichi Edamatsu and Postdoctoral fellow Naofumi Abe has demonstrated dynamically and statically unpolarized single-photon generation using diamond.
Solar cell design with over 50 percent energy-conversion efficiency
Solar cells convert the sun's energy into electricity by converting photons into electrons.
'Indistinguishable photons' key to advancing quantum technologies
Indistinguishable photons are critical for quantum information processing, and researchers are tapping nitrogen impurity centers found within gallium arsenide to generate them -- making a significant contribution toward realizing a large number of indistinguishable single-photon sources.
New research into light particles challenges understanding of quantum theory
Scientists have discovered a new mechanism involved in the creation of paired light particles, which could have significant impact on the study of quantum physics.
New portal to unveil the dark sector of the universe
IBS scientists theorize a new portal to peek into the dark world.
Hubble cooperates on galaxy cluster and cosmic background
The events surrounding the Big Bang were so cataclysmic that they left an indelible imprint on the fabric of the cosmos.
Large groups of photons on demand -- an equivalent of photonic 'integrated circuit'
Holographic atomic memory, invented and constructed by physicists from the Faculty of Physics at the University of Warsaw, is the first device able to generate single photons on demand in groups of several dozen or more.
First step towards photonic quantum network
Advanced photonic nanostructures are well on their way to revolutionizing quantum technology for quantum networks based on light.

Related Photons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...