New formula better predicts speed of tumor growth in 12 cancers

April 03, 2019

BUFFALO, N.Y. - University at Buffalo researchers have developed a new method to more accurately predict tumor growth rates, a crucial statistic used to schedule screenings and set dosing regimens in cancer treatment.

The mathematical method successfully estimated the doubling time -- the amount of time for a tumor to double in size -- for 12 types of cancer, ranging from breast and prostate cancers to melanoma.

The research, published in February in the AAPS Journal, was led by Dhaval Shah, PhD, associate professor in the UB School of Pharmacy and Pharmaceutical Sciences.

"This novel method allows clinicians and drug development scientists to use routinely-generated clinical data to infer doubling times of solid tumors. This parameter can be used to design individualized dosing regimens and develop reliable models for anticancer therapeutics," says Shah.

Tumor doubling time can significantly affect the outcome of anticancer therapy, but the rate is challenging to determine. Current methods calculate doubling time by measuring the size of a tumor at two points in time and assuming the cancer will grow at an exponential rate.

However, most doubling times calculated using this method are overestimated, and tiny changes in tumor size can make determining growth rates difficult.

The error impacts the ability of clinicians to schedule optimal follow-up screenings, set effective dosing regimens, and determine whether surgery, chemotherapy or radiation therapy is the best form of treatment.

The UB researchers instead base their method on data extracted from progression-free survival plots -- the length of time during and after treatment that a cancer does not grow or spread.

Progression-free survival plots, explains Shah, inherently contain information that could help identify tumor growth rates.

The investigators examined data from 47 clinical trials that reported plots for any of 12 cancer types: melanoma; pancreatic, lung, prostate, gastric, colorectal and three forms of breast cancer; hepatocellular (liver) and renal cell (kidney) carcinoma; and glioblastoma multiforme (brain).

The cancer growth rates predicted by the researchers using progression-free survival plots were within close range to the reported actual tumor doubling times.
-end-
Additional School of Pharmacy and Pharmaceutical Sciences co-authors include Robert Bies, PharmD, PhD, associate professor; Katherine Kay, PhD, former postdoctoral fellow; and former student Keith Dolcy, PharmD.

University at Buffalo

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.