Nav: Home

New study questions effects of reintroducing top predators

April 03, 2019

For years, scientists have assumed that when top predators are reintroduced to an ecosystem, the effects are predictable: The ecosystem will return to how it was before the predators were wiped out.

Now, University of Wyoming researchers have published a study showing that there's little evidence for such claims. This has big implications for wildlife conservation in places such as Yellowstone National Park.

Most people are probably familiar with the story of Yellowstone's wolves. Wolves were wiped out in Yellowstone in the 1920s and, in their absence, elk became much more common and ate so much vegetation that it degraded the ecosystem.

Wolves were reintroduced to Yellowstone in the mid-1990s and over the next two decades brought profound change to the ecosystem. The number of elk decreased, while the number of aspen, willow and cottonwoods increased. Biologists observed positive responses by other animals, from songbirds to beavers. Scientists assumed that Yellowstone's ecosystem is on its way to being restored to historical conditions.

But this new study questions that assumption: Do we really know what those historical conditions were? And, does reintroducing apex predators alter ecosystems with any predictability at all?

The team of researchers from UW, Yale University and the University of British Columbia-Okanagan set out to find the answer. The results were published in the journal Biological Conservation earlier this week.

Ecosystem restoration via large carnivore reintroduction relies on two critical assumptions. First, large carnivore reintroduction has to initiate a predictable trophic cascade -- that is, where carnivores reduce the abundance of herbivores, which, in turn, increases the abundance of the plants they feed on. Second, the magnitude of that trophic cascade has to push an ecosystem back to a previous state.

But lots of other things can happen, too. Reintroduction of large carnivores might not affect the ecosystem much at all. Or the ecosystem might veer off in a new, unpredictable direction due to changes to the ecosystem or biological communities that occurred when large carnivores were absent. This is particularly likely in today's era of climate change and invasive species, the researchers say.

There aren't many studies on this topic, so the researchers collected studies that included data on the reintroduction of native apex predators or removal of invasive ones. These events are two sides of the same coin: Reintroductions and removals should work the same way, but in opposite directions.

They found that trophic cascades brought on by these events don't appear to be predictable -- sometimes you get them, sometimes you don't. In fact, they found only one consistent result: When invasive apex predators were removed, smaller predators such as coyotes, foxes and rats become more common.

Jesse Alston, the lead author on this study, says there are two take-home messages to this work.

"We need more studies," he says. "More tests of this 'assumption of reciprocity,' as we call it -- particularly via rigorous experimental studies -- would be really helpful. This is hard data to get, but we really do need it before we can credibly claim that large carnivores restore ecosystems. They might not."

"We also think that large carnivore reintroduction should be pursued for its own sake," Alston adds. "Large carnivores are great, but using their effects on ecosystems to justify reintroduction might not hold up to scrutiny and could be counterproductive in the long term.

"We hope we set up a nice framework for thinking about large carnivore introduction and invasive species removal that others can run with. We want to raise an important question, but it's going to take lots of folks to provide a definitive answer. This is an unfinished story."
-end-


University of Wyoming

Related Invasive Species Articles:

Invasive species that threaten biodiversity on the Antarctic Peninsula are identified
Mediterranean mussels, seaweed and some species of land plants and invertebrates are among the 13 species that are most likely to damage the ecosystems on the Antarctic Peninsula.
Research networks can help BRICS countries combat invasive species
BRICS countries need more networks of researchers dedicated to invasion science if they wish to curb the spread of invasive species within and outside of their borders.
Look out, invasive species: The robots are coming
Researchers published the first experiments to gauge whether biomimetic robotic fish can induce fear-related changes in mosquitofish, aiming to discover whether the highly invasive species might be controlled without toxicants or trapping methods harmful to wildlife.
Monster tumbleweed: Invasive new species is here to stay
A new species of gigantic tumbleweed once predicted to go extinct is not only here to stay -- it's likely to expand its territory.
DNA tests of UK waters could help catch invasive species early
A team of scientists led by the University of Southampton have discovered several artificially introduced species in the coastal waters of southern England, using a technique that could help the early detection of non-native species if adopted more widely.
For certain invasive species, catching infestation early pays off
An international research team led by invasion ecologist Bethany Bradley at UMass Amherst has conducted the first global meta-analysis of the characteristics and size of invasive alien species' impacts on native species as invaders become more abundant.
Study offers insight into biological changes among invasive species
A remote island in the Caribbean could offer clues as to how invasive species are able to colonise new territories and then thrive in them, a new study by the University of Plymouth suggests.
The invasive species are likely to spread to a community not adapted to climate change
Laboratory experiment to indicate how invasive species are to spread new areas.
Invasive species and habitat loss our biggest biodiversity threats
Invasive species and habitat loss are the biggest threats to Australian biodiversity, according to new research by the Threatened Species Recovery Hub in partnership with The University of Queensland.
Forget 'needle in a haystack'; try finding an invasive species in a lake
When the tiny and invasive spiny water flea began appearing in UW-Madison researchers' nets in 2009, scientists began to wonder how Lake Mendota, one of the most-studied lakes in the world, went from flea-free to infested seemingly overnight, undetected by trained technicians.
More Invasive Species News and Invasive Species Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.