Nav: Home

Crowdsourcing speeds up earthquake monitoring

April 03, 2019

Data produced by Internet users can help to speed up the detection of earthquakes. Fast and accurate information is essential in the case of earthquakes: Epicentre location, depth and magnitude are minimum requirements to reliably estimate their possibly catastrophic consequences. An international team of scientists has presented a method to combine in real time data from seismic networks with information derived from users looking for earthquake information on specific websites, the smartphone LastQuake app and via Twitter. This method significantly reduces the time needed to detect and locate those earthquakes that are felt by the public. The team reported about their results in the journal Science Advances.

Robert J. Steed, Amaya Fuenzalida and Remy Bossu of the European-Mediterranean Seismological Centre (EMSC) in France carried out the research with colleagues from France, Hungary and Germany. The EMSC is one of the top global earthquake information centers which distributes global seismic data for free to the public via its websites (http://www.emsc-csem.org, m.emsc.eu) and its LastQuake smartphone app and Twitter. It also promotes the use of crowdsourcing to collect eyewitness reports, photos and videos following earthquakes in order to improve situational awareness. This research was done in collaboration with István Bondár (MTA CSFK), an expert in seismic location and the global earthquake monitoring service of the German Centre for Geosciences, GEOFON, which is among the fastest sources for earthquake information world-wide. GEOFON operates a network of around one hundred stations and combines this real-time data with that of other open networks to automatically analyze earthquake activity world-wide.

Usually within 3 to 8 minutes after an earthquake, a software developed at GFZ is able to compute location and magnitude of the earthquake. This information is made available online and shared immediately with partner organizations. The new method to compute location can accelerate the detection time to only 1 to 3 minutes for felt earthquakes. After feeling an earthquake, people tend to rapidly seek information from the Internet or tweet about their observations. The sudden increase in demand for earthquake information from websites like the EMSC can be detected and an approximate determination made of their geographical origin. This crowdsourcing data collected by the EMSC, in combination with seismic data provided by GFZ, accelerates the detection of felt earthquakes. The algorithm incorporates usage of the EMSC websites and the EMSC's smartphone app "LastQuake" as well as searching for the word "earthquake" in 59 different languages on Twitter.

The team used the crowdsourcing approach to analyze more than 1500 earthquakes during the years 2016 and 2017. The time required to arrive at a reliable detection could be reduced by on average more than a minute compared to the analysis of only seismic data.
-end-
Title of Study:
Robert J. Steed, Amaya Fuenzalida, Rémy Bossu, István Bondár, Andres Heinloo, Aurelien Dupont, Joachim Saul, Angelo Strollo, "Crowdsourcing triggers rapid, reliable earthquake locations" (Science Advances, April 2019, DOI: 10.1126/sciadv.aau9824)

Contact Information:
Robert Steed (English) (Data Analyst and Software Engineer at EMSC)
Tel.: +33 649847334
Email: robsteed@gmail.com, robert.steed@emsc-csem.org

Rémy Bossu (English, French language) (Secretary General of European Mediterranean Seismic Centre (EMSC))
Tel.: +33 685541809
E-Mail: bossu_remy@yahoo.fr , bossu@emsc-csem.org

Dr. Joachim Saul (German and English)
Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum (GFZ)
Tel.: +49 331 288-1267
E-Mail: joachim.saul@gfz-potsdam.de

Media Inquiries:
Josef Zens
Tel.: +49 (0)331 288 1040
E-Mail: josef.zens@gfz-potsdam.de

GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

Related Earthquake Articles:

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
Earthquake in super slo-mo
A big earthquake occurred south of Istanbul in the summer of 2016, but it was so slow that nobody noticed.
A milestone for forecasting earthquake hazards
In a new study in Science Advances, researchers report that their physics-based model of California earthquake hazards replicated estimates from the state's leading statistical model.
Mw 5.4 Pohang earthquake tied to geothermal activity?
The Mw 5.4 Pohang earthquake that occurred near a geothermal site in South Korea last year was likely triggered by fluid injection at the geothermal plant, two separate reports conclude.
Seismologists introduce new measure of earthquake ruptures
A team of seismologists has developed a new measurement of seismic energy release that can be applied to large earthquakes.
Residual strain despite mega earthquake
On Christmas Day 2016, the earth trembled in southern Chile.
The losses that come after the earthquake: Devastating and costly
The study, titled, 'Losses Associated with Secondary Effects in Earthquakes,' published by Frontiers in Built Environmen, looks at the devastation resulting from secondary disasters, such as tsunamis, liquefaction of sediments, fires, landslides, and flooding that occurred during 100 key earthquakes that occurred from 1900 to the present.
More Earthquake News and Earthquake Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.