Nav: Home

How understanding animal behavior can support wildlife conservation

April 03, 2019

Advancement in sensor technologies has meant that field biologists are now collecting a growing mass of ever more precise data on animal behaviour. Yet there is currently no standardized method for determining exactly how to interpret these signals. Take meerkats, for instance. A signal that the animal is active could mean that it is moving; alternatively, it could indicate that it is digging in search of its favorite prey, scorpions. Likewise, an immobile meerkat could be resting - or keeping watch.

In an effort to answer these questions, researchers from EPFL's Laboratory of Movement Analysis and Measurement (LMAM) teamed up with colleagues from the University of Zurich's Population Ecology Research Group to develop a behavior recognition model. The research was conducted in affiliation with the Kalahari Research Centre.

Assessing human impact on wildlife

"Human activity is having ever greater and more frequent impact on animal behavior," says Pritish Chakravarty, a PhD student at the LMAM. "Once we understand how animal behaviour changes in response to external stimuli, we can better shape our conservation efforts." Chakravarty explains, for instance, that authorities can designate known feeding and hunting grounds as protected areas. "But that can only happen if we know with high accuracy which signals mean the animal is searching for food, changing location or engaged in a static activity."

A new biomechanical approach

The new model draws on general biomechanical principles such as posture, movement intensity and frequency. It allows researchers to precisely determine what an animal is doing - resting, keeping watch, running, or searching for food - using input from a wearable accelerometer. The device, which is compatible with a variety of species, has been repurposed by the LMAM research team to capture data such as body inclination, acceleration, vibrations and impacts.

First, the model distinguishes between two broad categories of behavior - dynamic (running, searching for food) and static (resting, keeping watch) - by analysing movement and posture intensity. If the animal is still, the researchers can tell whether it is resting or keeping watch by looking at the inclination of its torso. And when the animal is on the move, they can use movement intensity and frequency to determine whether it is running or searching for food.

Field data

The fieldwork was carried out by specially trained long-term volunteers at the Kalahari Research Centre. The team fitted sensor collars to 10 meerkats, then recorded data and filmed the animals going about their business for three hours. After analysing the recordings to identify different types of activity, the researchers developed a hybrid model, using biomechanical principles and the data collected in the field to train a machine-learning algorithm to recognise different patterns of behavior.

The researchers' work marks the first step towards a standardized method for analysing animal behavior from wearable accelerometer signals. The model could be refined to produce more accurate and detailed information about specific behaviors in future studies. "The model could be used, for instance, to provide an estimate of how much energy an animal expends searching for food," says Chakravarty. "That would tell us how much time and effort it takes for a meerkat to find something to eat, and whether a particular spot is of particular interest for the group."

The Kalahari Research Centre was set up in 1993 by the University of Cambridge and is the site of several research projects.
-end-


Ecole Polytechnique Fédérale de Lausanne

Related Behavior Articles:

Is Instagram behavior motivated by a desire to belong?
Does a desire to belong and perceived social support drive a person's frequency of Instagram use?
A 3D view of climatic behavior at the third pole
Research across several areas of the 'Third Pole' -- the high-mountain region centered on the Tibetan Plateau -- shows a seasonal cycle in how near-surface temperature changes with elevation.
Witnessing uncivil behavior
When people witness poor customer service, a manager's intervention can help reduce hostility toward the company or brand, according to WSU research.
Whole-brain imaging of mice during behavior
In a study published in Neuron, Emilie Macé from Botond Roska's group and collaborators demonstrate how functional ultrasound imaging can yield high-resolution, brain-wide activity maps of mice for specific behaviors.
Swarmlike collective behavior in bicycling
Nature is full of examples of large-scale collective behavior; humans also exhibit this behavior, most notably in pelotons, the mass of riders in bicycle races.
More Behavior News and Behavior Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...