Duke chemists synthesize fungus compound that could lead to oral diabetes drugs

April 04, 2001

SAN DIEGO - Duke University chemists have used "combinatorial chemistry" techniques to synthesize a compound originally extracted from an African fungus that could lead to oral drugs that control diabetes.

The compound, called demethylasterriquinone B1 or "DAQ" for short, "has this fascinating property of being able to activate insulin receptors in cells in basically the same way as insulin, and yet it's not a protein," said Michael Pirrung, a Duke chemistry professor who prepared his team's work for presentation Wednesday at the American Chemical Society's national meeting in San Diego.

"Instead, it's just a regular organic molecule like you take for your allergies. And because it's a regular organic molecule you can take it orally, which is such a big deal," Pirrung added in an interview at Duke. Insulin to treat diabetes requires injections. "The other big thing is that it's a naturally occurring molecule," he noted. "And one area that combinatorial chemistry has previously not really made any inroads into is naturally occurring compounds."

Combinatorial chemistry seeks to efficiently synthesize and identify chemicals with desired traits by mixing and matching large "libraries" of different molecular building blocks to eventually create the desired structure. Pirrung helped pioneer "solid phase synthesis" techniques for performing combinatorial chemistry reactions on the surfaces of small glass chips.

However, "the DAQ molecule is not particularly amenable to synthesis while its pieces are attached to a solid," he said. Fortunately, Pirrung noted, "the principles of combinatorial chemistry have now been expanded to molecules that are made in solution."

Instead of fixing molecular libraries to a surface, tiny samples of each library entry can be placed in a different small well, with different reagents then pipetted in to interact there, he said.

Merck Research Laboratories scientists originally discovered DAQ by systematically screening more than 50,000 combinations of synthetic and natural compounds for molecules that activate human insulin receptors, according to articles in the May 7, 1999 issue of the journal Science.

In a report in the Jan. 12, 2001 issue of the American Chemical Society journal Organic Letters, Pirrung, Duke post-doctoral fellow Kaapjoo Park and graduate student Zhitao Li described the start of now-completed efforts by Duke combinatorial chemists to synthesize DAQ more efficiently.

"The molecule itself is highly modular," Pirrung said. "It has an indole ring, a quinone ring, and a different indole ring. So that makes it perfect for combinatorial chemistry. If you have three variants of the first module, three of the second and three of the third, just by combining all those forms there are 27 possible compounds to make. So that enables you to make very large collections of related molecules."

Indole, a protein decomposition product occurring in some flower oils, is a ring-shaped organic molecule made of carbon, hydrogen and nitrogen atoms. Quinones are ring-shaped compounds containing double-bonded carbon and oxygen groups.

"One of the things that I think is really interesting about this project is that it's enabling us to address basic questions about the insulin receptors and how they work," said Pirrung, who also is a key member of Duke's Program in Biological Chemistry. To study insulin receptors, his lab will begin raising the fruit fly Drosophila, an insect that uses insulin receptors to regulate growth rather than blood sugar levels.

The authors of the Science report also noted that DAQ does not activate the receptor for insulin-like growth factor-1 (IGF-1), which is similar to the insulin receptor and has been tied to both prostate and breast cancer.

Pirrung noted that Nicholas Webster, a researcher at the University of California San Diego, has suggested evaluating DAQ-like compounds for use against prostate cancer.

In addition to its support from the American Diabetes Association, Pirrung's lab has now begun studying the chemistry of the IGF-1 receptor with funding from CapCURE, a foundation begun by Michael Milken to address prostate cancer. "There are many other so-called growth factors in the cell that have similar though not the same kind of receptor," he said. "And we're thinking that these molecules we've been working on might have what medicinal chemists sometimes call a 'privileged structure.'

"There are certain kinds of structures that keep showing up over and over again in biologically active molecules, steroids being an obvious example. What we're hoping is that this initial hit has gotten us into chemicals that have privileged structures for growth factor receptors.

"So having a big selection of molecules to look at, with a large number of different growth factor receptors, could be very powerful in finding new molecules that could selectively turn the receptors off or on."
Note to editors: Michael Pirrung's talk at the American Chemical Society's national meeting is scheduled for 3:20 p.m. PST on Wednesday in Room 9 of the San Diego Convention Center.

Duke University

Related Insulin Articles from Brightsurf:

US Insulin prices 8 times higher than in other nations
Insulin list prices in the United States have increased dramatically over the past decade, with per person insulin spending doubling between 2012 and 2016.

A gatekeeper against insulin resistance in the brain
The brain plays a major role in controlling our blood glucose levels.

Sorting and secreting insulin by expiration date
Visualizing the age of insulin secreting granules in cells allowed researchers to investigate how cells' preference for secreting newer granules is disrupted in diabetes.

Researchers develop a new ultrafast insulin
Stanford researchers tested a new insulin drug in diabetic pigs and found that it was twice as fast-acting as traditional insulin.

Insulin signaling suppressed by decoys
The discovery of an insulin 'decoy' molecule from the lab of Matthew Gill, PhD, in Florida shakes up understanding of insulin signaling, with implications for diabetes, longevity and aging research.

New mechanism for dysfunctional insulin release identified
In a new study, researchers at Uppsala University have identified a previously unknown mechanism that regulates release of insulin, a hormone that lowers blood glucose levels, from the β-cells (beta cells) of the pancreas.

Type 2 diabetes is not just about insulin
Obesity, by promoting the resistance to the action of insulin, is a major risk factor of diabetes.

The insulin under the influence of light
By understanding how the brain links the effects of insulin to light, researchers (UNIGE) are deciphering how insulin sensitivity fluctuates according to circadian cycles.

Does insulin resistance cause fibromyalgia?
Researchers led by a team from The University of Texas Medical Branch at Galveston were able to dramatically reduce the pain of fibromyalgia patients with medication that targeted insulin resistance.

Insulin insights
Insulin triggers genome-wide changes in gene expression via an unexpected mechanism.

Read More: Insulin News and Insulin Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.