Amberlyst-15 can act as a catalyst for the acylation of phenols and alcohols

April 04, 2013

Owing to the huge array of applications, catalysis has long been dubbed as one of the most significant areas of process and synthetic chemistry. In fact, the vast majority of all chemical industrial products - be it in the field of pharmaceutical, agricultural or polymer chemistry - involve catalysts at some stage of the manufacturing process.

Catalytic processes are generally conducted in homogeneous phase using anhydrous organic solvents (e.g. halogenated solvents, toluene, etc.) which are very toxic and hard to eliminate. The development of environmentally friendly and efficient catalytic systems continues to be a major challenge, with researchers and industry teaming up to come up with new solutions that would make catalytic reactions and catalysts not only more ecologically sound, but more efficient and cost-effective (i.e. recyclable). An increasing demand for sustainable catalysis in the last decade has produced a prolific research into Green Chemistry, with scientists investigating different aspects of applied catalysis. In fact, the "Twelve Principles of Green Chemistry" address numerous concerns, such as the use of toxic solvents, expensive reagents and catalysts, the number of chemical steps and their reaction conditions and the atom-economy of these synthetic protocols. A diverse set of approaches can be employed to make this process green and sustainable. First and foremost, preventing or minimizing the use of organic solvents is a way to adopt - this can be achieved either by replacing hazardous solvents with ones that have superior ecological health and safety properties or, better still, by using solvent-free processes. Another important approach concerns the development of catalysts that could be repeatedly recycled and reused with minimal effort.

That aspect, bearing in mind the feasibility of a process in an industrial application, may be of particular importance, as all too often catalysts are expensive and hence there is considerable pressure to reduce costs via recyclability. Now, Mumbai Researchers have developed an inexpensive and entirely green procedure, which enables catalytic acetylation of phenols and alcohols under solvent-free conditions.

In the paper: "Amberlyst-15 catalyzed acetylation of phenols and alcohols under solvent free conditions", released recently in Recyclable Catalysis, an open access journal by Versita, Prof. Manoj Pande and Prof. Shriniwas D. Samant from the University Institute of Chemical Technology in Mumbai, India offer a novel and highly sustainable method for the acylation of phenols and alcohols. They found that Amberlyst-15 is an active catalyst for the acylation of phenols and alcohols by means of acetic anhydride as an acylating agent at room temperature under heterogeneous conditions. The scientists confirmed that applications of this catalyst allow mild and highly selective transformations and synthesis in a facile and environmentally friendly manner. Equally worth mentioning is the fact that the catalysts can be recovered by filtration and recycled several times without loss of activity and selectivity.

Pande and Simant set up a mild, efficient and simple method for the acetylation of phenols and alcohols using acetic anhydride as an acylating agent in the presence of a catalytic amount of Amberlyst-15. The acetylation procedure was extended to a variety of phenols and alcohols to obtain the corresponding acetates in good to excellent yields. They also tested the recyclability of Amberlyst-15 in the reaction of p-bromophenol with acetic anhydride: The catalyst performed outstandingly - exhibiting excellent potential for sustainability - it was reusable for four cycles with no decrease in its activity, giving almost quantitative yield in 4-bromophenylacetate in 20 min. at room temperature.

An inexpensive material, Amberlyst-15 possesses unique properties such as environmental compatibility, nontoxicity, reusability, non-corrosiveness and chemical and physical stability - allowing for its versatile synthetic applications. It is also one of the most resistant catalysts and can be used over a prolonged period.

This cost-effective process proves uncomplicated, workable and generating minimal waste. Considering the sought after recyclability of the catalyst, the method bodes well as it can be potentially scaled up for industrial purposes. Usually, the organic chemists perform the acylation of alcohols with acid chlorides in the presence of Et3N or pyridine. In contrast to the current methodologies, additives are not needed - which certainly offers significant economic and environmental benefits.
-end-
Full article available here: http://www.degruyter.com/view/j/recat.2012.1.issue/recat-2012-0002/recat-2012-0002.xml

De Gruyter Open

Related Environmentally Friendly Articles from Brightsurf:

Environmentally friendly method could lower costs to recycle lithium-ion batteries
A new process for restoring spent cathodes to mint condition could make it more economical to recycle lithium-ion batteries.

Tel Aviv University says 'environmentally-friendly' tableware harms marine animals
A new Tel Aviv University study compares the effects of two types of disposable dishes on the marine environment -- regular plastic disposable dishes and more expensive bioplastic disposable dishes certified by various international organizations -- and determines that the bioplastic dishes had a similar effect on marine animals as regular plastic dishes.

New findings pave the way to environmentally friendly supercapacitors
Similar to batteries, supercapacitors are suitable for the repeated storage of electrical energy.

Scientists have discovered an environmentally friendly way to transform silicon into nanoparticles
Scientists have developed a new method of silicon recycling. The majority of solar panels that are produced in ever-increasing quantities use silicon.

Nutrients in microalgae: An environmentally friendly alternative to fish
Microalgae could provide an alternative source of healthy omega-3 fatty acids for humans while also being more environmentally friendly to produce than popular fish species.

Removing toxic chemicals from water -- New environmentally-friendly method
Researchers from Swansea University have developed a new environmentally friendly method for removing toxic chemicals from water.

Green chemistry of fullerene: Scientists invented an environmentally friendly way to realize organic
Scientists from the Skoltech Center for Energy Science and Technology (CEST) and the Institute for Problems of Chemical Physics of Russian Academy of Sciences have developed a novel approach for preparing thin semiconductor fullerene films.

Environmentally friendly shipping helps to reduce freight costs
The shipping sector has potential to gain profit by reducing carbon dioxide emissions.

The majority consider themselves more environmentally friendly than others
Research from the University of Gothenburg shows that we tend to overestimate our personal environmental engagement.

Scientists have developed environmentally friendly way to build up road foundations
Scientists of Far Eastern Federal University (FEFU) and the Federal University of Technology -- ParanĂ¡/Brazil together with colleagues from Kazakhstan have proposed to build road foundations from a mixture of loam, metal slag and lime waste instead of traditional layers of natural sand and gravel.

Read More: Environmentally Friendly News and Environmentally Friendly Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.