Nav: Home

Common pesticides kill amphibian parasites, study finds

April 04, 2016

BINGHAMTON, NY - The combined effects of pesticides and parasites threaten wildlife populations worldwide (e.g. amphibians, honeybees). Pesticides are predicted to exacerbate the effects of parasites on their hosts by reducing the host's ability to defend against parasite infection. Many studies have examined the effects of pesticides on the host organism, but not much attention has been paid to how pesticides directly affect parasites - until now.

A recent study by Jessica Hua, assistant professor of biological sciences at Binghamton University, and colleagues, explored the effects of six commonly used pesticides on two different populations of a widespread parasite of amphibians. They found that a broad range of insecticides commonly used in the U.S. kill amphibian parasites, which could potentially decrease the number of parasites that amphibians must defend against. For the pyrethroid and neonicotinoid pesticides tested in this study, this pattern has not been documented before.

"We often focus on how pesticides influence the ability for a host to defend against a parasite," said Hua. "However, a less studied perspective is whether and how pesticides affect the ability for parasites to successfully infect their hosts."

Of the two parasite populations tested, Hua and her team found that parasites from the population living closer to agriculture were consistently more resistant to the pesticides. These findings suggest that considering multiple populations is critical to assessing toxicity of pesticides to amphibian parasites. "Overlooking population-level differences in pesticide resistance could lead to an underestimation or overestimation of how toxic a chemical is to parasites," said Hua. "Adding realistic complexity such as population variation in resistance to our studies of toxicology is important to understanding how pesticides affect the interaction between host and their parasites."

Finally, while all six pesticides tested caused mortality of trematodes at the cercariae stage (the "free swimming stage" of the parasite). Increasing concentrations of pesticide did not always cause higher parasite mortality (i.e. the dose did not always make the poison). This suggests that traditional methods of toxicology that rely on dose-dependent responses may not be enough to help us predict what pesticides are doing to parasites.
-end-
The study, "Population-specific toxicity of six insecticides to the trematode Echinoparyphium sp.," was published in Parasitology.

Binghamton University

Related Pesticides Articles:

Nanozymes -- efficient antidote against pesticides
Members of the Faculty of Chemistry of the Lomonosov Moscow State University have developed novel nanosized agents -- nanozymes, which could be used as efficient protective and antidote modalities against the impact of neurotoxic organophosphorous compounds: pesticides and chemical warfare agents.
Study examines pesticides' impact on wood frogs
A new study looks at how neonicotinoid pesticides affect wood frogs, which use surface waters in agricultural environments to breed and reproduce.
USDA announces $1.8 million for research on next generation pesticides
The US Department of Agriculture's (USDA) National Institute of Food and Agriculture (NIFA) today announced $1.8 million in available funding to research new, environmentally friendly pesticides and innovative tools and strategies to replace an older treatment, methyl bromide.
Light therapy could save bees from deadly pesticides
Treating bees with light therapy can counteract the harmful effects of neonicotinoid pesticides and improve survival rates of poisoned bees, finds a new UCL study.
The effects of pesticides on soil organisms are complex
There are significant interactions between soil management factors, including pesticide application, with respect to effects on soil organisms.
Pesticides used to help bees may actually harm them
Honeybees from chlorothalanil-treated hives showed the greatest change in gut microbiome.
Research associates some pesticides with respiratory wheeze in farmers
New research from North Carolina State University connects several pesticides commonly used by farmers with both allergic and non-allergic wheeze, which can be a sensitive marker for early airway problems.
Electronic nose smells pesticides and nerve gas
Detecting pesticides and nerve gas in very low concentrations. An international team of researchers led by Ivo Stassen and Rob Ameloot from KU Leuven, Belgium, have made it possible.
Honeybees pick up 'astonishing' number of pesticides via non-crop plants
A Purdue University study shows that honeybees collect the vast majority of their pollen from plants other than crops, even in areas dominated by corn and soybeans, and that pollen is consistently contaminated with a host of agricultural and urban pesticides throughout the growing season.
Common pesticides kill amphibian parasites, study finds
A recent study by Jessica Hua, assistant professor of biological sciences at Binghamton University, and colleagues, explored the effects of six commonly used pesticides on two different populations of a widespread parasite of amphibians.

Related Pesticides Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...