Nav: Home

New laser to shine light on remote sensing

April 04, 2016

A revolutionary new type of laser developed by the University of Adelaide is promising major advances in remote sensing of greenhouse gases.

Published in the journal Optics Letters, a research team from the University of Adelaide and Macquarie University has shown that the new laser can operate over a large range within the infrared light spectrum.

"Most lasers work only at one wavelength of light," says lead author Dr Ori Henderson-Sapir. "What's special about this laser is that it not only can change wavelengths (tunability), but that it can be tuned over a very large wavelength range.

"In fact this laser has the largest wavelength tuning ever demonstrated by a fibre laser, and reaches further into the mid-infrared than ever achieved before from a fibre laser operating at room temperature."

Importantly, the laser operates in a wavelength range in which the 'molecular fingerprints' of many organic molecules occur. The 'fingerprints' are patterns of light absorption at different frequencies.

"The new laser is operating at a wavelength where many hydrocarbon gases, including the greenhouse gases, absorb light," says project leader Associate Professor David Ottaway, from the University of Adelaide's School of Physical Sciences and the Institute for Photonics and Advanced Sensing. "This means that by changing the wavelength of our laser, we can measure the light absorption patterns of different chemicals with a high degree of sensitivity.

"This will allow us to detect small concentrations of these gases at considerable distances. Remote detection of greenhouse gasses such as methane and ethane opens up the prospect of differentiating between various potential emission sources, such as natural gas extraction and agriculture -- and so pinpoint areas of concern."

Other potential applications for the future include the possibility of analysing trace gases in exhaled breath at a clinic to detect the presence of disease. For example, acetone can be detected in the breath when someone has diabetes.

"The main limitation to date with laser detection of these gases has been the lack of suitable and affordable light sources that can produce enough energy and operate at the correct part of the light spectrum," says Associate Professor Stuart Jackson, of Macquarie University. "The few available sources that can cover the wavelength range necessary for the detection of these gases are generally expensive and bulky and, therefore, not suitable for widespread use."

The new laser uses an optical fibre which is easier to work with -- less bulky and more portable -- and much more cost effective to produce than other types of laser.

"It has incredible potential for scanning for a range of gases with a high level of sensitivity and, because of its affordability, it promises to be a very useful sensing tool," says Dr Ottaway. "We hope this laser will open up opportunities for lasers in the mid-infrared in a similar manner that that titanium doped sapphire lasers revolutionised lasers operating in the visible and near-infrared."
-end-
This research was supported by the South Australian Government, through the Premiers Research and Industry Fund and the Australian Research Council.

Media contacts

Associate Professor David Ottaway
Project leader
The University of Adelaide
Phone: +61 8 8313 5165
Mobile: +61 0430 325 099
david.ottaway@adelaide.edu.au

Associate Professor Stuart Jackson
Co-author
Macquarie University
Phone: +61 2 9850 9137
stuart.jackson@mq.edu.au

Dr Ori Henderson-Sapir
Lead author
The University of Adelaide
Mobile: +61 403 119 776
ori.henderson-sapir@adelaide.edu.au

Robyn Mills
Media Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

University of Adelaide

Related Greenhouse Gases Articles:

Decomposing leaves are surprising source of greenhouse gases
Scientists have pinpointed a new source of nitrous oxide, a greenhouse gas that's more potent than carbon dioxide.
Decomposing leaves are a surprising source of greenhouse gases
Michigan State University scientists have pinpointed a new source of nitrous oxide, a greenhouse gas that's more potent than carbon dioxide.
NASA to measure greenhouse gases over the mid-Atlantic region in may
In May, a team of Goddard scientists will begin measuring greenhouse gases over the Mid-Atlantic region -- an area chosen in part because it encompasses a range of vegetation, climate and soil types that would influence the exchange of carbon dioxide and methane between Earth and the atmosphere.
Greenhouse gases: First it was cows -- now it's larvae!
Scientists at UNIGE have discovered that Chaoborus spp uses the methane it finds in lakebeds to help it move around.
Energy crop production on conservation lands may not boost greenhouse gases
Growing sustainable energy crops without increasing greenhouse gas emissions, may be possible on seasonally wet, environmentally sensitive landscapes, according to researchers who conducted a study on Conservation Reserve Program (CRP) land.
More Greenhouse Gases News and Greenhouse Gases Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.