Nav: Home

New laser to shine light on remote sensing

April 04, 2016

A revolutionary new type of laser developed by the University of Adelaide is promising major advances in remote sensing of greenhouse gases.

Published in the journal Optics Letters, a research team from the University of Adelaide and Macquarie University has shown that the new laser can operate over a large range within the infrared light spectrum.

"Most lasers work only at one wavelength of light," says lead author Dr Ori Henderson-Sapir. "What's special about this laser is that it not only can change wavelengths (tunability), but that it can be tuned over a very large wavelength range.

"In fact this laser has the largest wavelength tuning ever demonstrated by a fibre laser, and reaches further into the mid-infrared than ever achieved before from a fibre laser operating at room temperature."

Importantly, the laser operates in a wavelength range in which the 'molecular fingerprints' of many organic molecules occur. The 'fingerprints' are patterns of light absorption at different frequencies.

"The new laser is operating at a wavelength where many hydrocarbon gases, including the greenhouse gases, absorb light," says project leader Associate Professor David Ottaway, from the University of Adelaide's School of Physical Sciences and the Institute for Photonics and Advanced Sensing. "This means that by changing the wavelength of our laser, we can measure the light absorption patterns of different chemicals with a high degree of sensitivity.

"This will allow us to detect small concentrations of these gases at considerable distances. Remote detection of greenhouse gasses such as methane and ethane opens up the prospect of differentiating between various potential emission sources, such as natural gas extraction and agriculture -- and so pinpoint areas of concern."

Other potential applications for the future include the possibility of analysing trace gases in exhaled breath at a clinic to detect the presence of disease. For example, acetone can be detected in the breath when someone has diabetes.

"The main limitation to date with laser detection of these gases has been the lack of suitable and affordable light sources that can produce enough energy and operate at the correct part of the light spectrum," says Associate Professor Stuart Jackson, of Macquarie University. "The few available sources that can cover the wavelength range necessary for the detection of these gases are generally expensive and bulky and, therefore, not suitable for widespread use."

The new laser uses an optical fibre which is easier to work with -- less bulky and more portable -- and much more cost effective to produce than other types of laser.

"It has incredible potential for scanning for a range of gases with a high level of sensitivity and, because of its affordability, it promises to be a very useful sensing tool," says Dr Ottaway. "We hope this laser will open up opportunities for lasers in the mid-infrared in a similar manner that that titanium doped sapphire lasers revolutionised lasers operating in the visible and near-infrared."
-end-
This research was supported by the South Australian Government, through the Premiers Research and Industry Fund and the Australian Research Council.

Media contacts

Associate Professor David Ottaway
Project leader
The University of Adelaide
Phone: +61 8 8313 5165
Mobile: +61 0430 325 099
david.ottaway@adelaide.edu.au

Associate Professor Stuart Jackson
Co-author
Macquarie University
Phone: +61 2 9850 9137
stuart.jackson@mq.edu.au

Dr Ori Henderson-Sapir
Lead author
The University of Adelaide
Mobile: +61 403 119 776
ori.henderson-sapir@adelaide.edu.au

Robyn Mills
Media Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

University of Adelaide

Related Greenhouse Gases Articles:

Decomposing leaves are surprising source of greenhouse gases
Scientists have pinpointed a new source of nitrous oxide, a greenhouse gas that's more potent than carbon dioxide.
Decomposing leaves are a surprising source of greenhouse gases
Michigan State University scientists have pinpointed a new source of nitrous oxide, a greenhouse gas that's more potent than carbon dioxide.
NASA to measure greenhouse gases over the mid-Atlantic region in may
In May, a team of Goddard scientists will begin measuring greenhouse gases over the Mid-Atlantic region -- an area chosen in part because it encompasses a range of vegetation, climate and soil types that would influence the exchange of carbon dioxide and methane between Earth and the atmosphere.
Greenhouse gases: First it was cows -- now it's larvae!
Scientists at UNIGE have discovered that Chaoborus spp uses the methane it finds in lakebeds to help it move around.
Energy crop production on conservation lands may not boost greenhouse gases
Growing sustainable energy crops without increasing greenhouse gas emissions, may be possible on seasonally wet, environmentally sensitive landscapes, according to researchers who conducted a study on Conservation Reserve Program (CRP) land.
Short-lived greenhouse gases cause centuries of sea-level rise
Even if there comes a day when the world completely stops emitting greenhouse gases into the atmosphere, coastal regions and island nations will continue to experience rising sea levels for centuries afterward, according to a new study by researchers at MIT and Simon Fraser University.
Reservoirs are a major source of greenhouse gases
The BioScience Talks podcast (http://bioscience.libsyn.com) features discussions of topical issues related to the biological sciences
Reservoirs are a major source of greenhouse gases
Dammed rivers are often considered environmentally friendly, carbon-neutral energy sources, but the reservoirs they create release large amounts of greenhouse gases to the atmosphere.
Controlled Colorado River flooding released stored greenhouse gases
The 2014 experimental controlled pulse of water to the Colorado River Delta has revealed an interesting twist on how large dry watercourses may respond to short-term flooding events: the release of stored greenhouse gases.
OU team investigates microbe-climate interactions in greenhouse gases
A University of Oklahoma research team will analyze microbe-climate interactions in greenhouse gases (CO2, CH4 and N2O) from grasslands and croplands in Oklahoma.

Related Greenhouse Gases Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.